This book gives a comprehensive, state-of-the-art presentation of signal processing. techniques for mobile communications. Distinguished specialists. contributed the 28 chapters of the book, which are written in an in-depth survey and tutorial style. The book addresses the main. challenges of future mobile communications and provides signal processing tools to meet these challenges. Topics include: 4G. terrestrial cellular and mobile IP networks, satellite mobile communications, positioning and navigation, adaptive equalization, channel modeling and identification, multi-user detection, array processing, adaptive coded modulation, multiple-input multiple output, (MIMO) systems, diversity combining, and time-frequency analysis. Emerging techniques such as cross layer design, neural networks, Monte. Carlo Markov Chain (MCMC) methods and Chaos are also explored.
Author(s): Mohamed Ibnkahla
Edition: 1
Publisher: CRC Press
Year: 2004
Language: English
Pages: 821
Signal Processing for Mobile Communications Handbook......Page 1
Preface......Page 3
Editor......Page 4
Contributors......Page 5
Contents......Page 7
Introduction......Page 10
Contents......Page 0
Abstract......Page 11
1.2.1.1.1 Free-Space Propagation Model......Page 12
1.2.1.2.1 Lognormal Shadowing Model......Page 13
1.2.2.1.4 Power Delay Profile,......Page 14
1.2.2.2 Types of Small-Scale Fading......Page 15
1.2.2.2.4 Slow Fading......Page 16
1.2.2.3.3 Nakagami Fading Channel......Page 17
1.2.2.4.1 Two-Ray Fading Channel Model......Page 18
1.2.2.4.3 Finite-State Markov Chain Model......Page 19
1.2.2.4.4 LooÌs Satellite Channel Model......Page 20
1.2.2.4.5.1 Matrix Channel Model......Page 21
1.2.2.4.5.2 Physical Scattering Model......Page 22
1.3.2.1 Phase Shift Keying......Page 23
1.3.2.3 Quadrature Amplitude Modulation......Page 25
1.3.2.4 Frequency Shift Keying......Page 26
1.3.2.5 Continuous-Phase FSK......Page 27
1.3.2.9 Orthogonal Frequency Division Multiplexing......Page 28
1.3.2.10 Challenges in the Next-Generation System Concerning Different Modulation Techniques......Page 29
1.4.1 Shannon’s Capacity Theorem......Page 30
1.4.2 Different Coding Schemes......Page 31
1.4.2.1.6 Implementation Complexity......Page 32
1.4.2.1.9 Interleaving......Page 33
1.4.2.2.1 Pictorial Representation of Convolutional Encoder......Page 34
1.4.2.4 Turbo Coding......Page 36
1.4.3 Coding in Next-Generation Mobile Communications: Some Research Evidence and Challenges......Page 37
1.5.1.1.2 Demerits......Page 39
1.5.1.3.2 Merits......Page 40
1.5.2 Combination of OFDM and CDMA Systems......Page 41
1.5.2.3 MC-DS CDMA Scheme......Page 42
1.5.4 Capacity of MAC Methods......Page 43
1.5.5 Challenges in the MAC Schemes......Page 44
1.6.1 Classifications of the Diversity Techniques......Page 45
1.6.2.2 Postdetection Diversity Combiners......Page 46
1.6.4 Challenges in the Diversity Area......Page 47
References......Page 48
Channel Modeling and Estimation......Page 53
Abstract......Page 54
2.1 Introduction......Page 55
2.2.1 Intuitive Description......Page 56
2.2.2 Mathematical Description: Deterministic Case......Page 58
2.2.3 Mathematical Description: Stochastic Case......Page 59
2.2.4 Condensed Parameters......Page 60
2.2.5 Directional Description......Page 61
2.3.1 Measured Channel Impulse Responses......Page 63
2.3.2 Deterministic Channel Computation......Page 64
2.3.2.2 High-Frequency Approximations......Page 65
2.3.3 Tapped Delay Lines......Page 67
2.3.4 Stochastic MIMO Models......Page 68
2.3.5 Geometry-Based Stochastic Channel Models......Page 69
2.4 Propagation Aspects and Parameterization......Page 70
2.4.1 Amplitude Statistics......Page 71
2.4.2 Arrival Times......Page 72
2.4.3 Average Time Dispersion......Page 73
2.4.4 Average Angular Dispersion at the BS......Page 74
2.4.5 Average Angular Dispersion at the MS......Page 75
2.4.8 Millimeter Wave Propagation......Page 76
2.5.1 The COST 207 Model......Page 77
2.5.2 The ITU-R Models......Page 78
2.5.4 The 802.15 Ultrawideband Channel Model......Page 80
2.5.5 The 3GPP--3GPP2 Model......Page 82
2.5.6 The COST 259 Model......Page 83
References......Page 84
Definitions and Symbols......Page 95
Abbreviations......Page 96
3.1 Introduction......Page 98
3.2.1.1 Tapped Delay Line Model......Page 100
3.2.1.2 Basis Expansion Models......Page 102
3.2.2 Time-Invariant Channels......Page 103
3.3 Channel Estimation......Page 105
3.3.1.1 Time-Variant Channels......Page 106
3.3.2.1.1 Stochastic Maximum Likelihood Estimation......Page 107
3.3.2.1.2 Deterministic Maximum Likelihood Estimation......Page 108
3.3.2.2.1.1 Indirect Channel Estimation......Page 109
3.3.2.2.2 SIMO Channel Estimation......Page 110
3.3.4 Hidden Pilot-Based Approaches......Page 116
3.3.4.1 Equalization......Page 118
3.4.1 Example 1......Page 119
3.4.2 Example 2......Page 120
References......Page 122
4.1 Introduction......Page 126
4.2 Statistical Propagation Models......Page 127
4.2.1.1 Single-State Statistical Models......Page 129
4.2.1.1.1.3 Rice Distribution......Page 130
4.2.1.1.1.6 Suzuki Distribution......Page 131
4.2.1.1.1.8 RLN Distribution......Page 132
4.2.1.1.1.9 P¨ atzold et al. Distribution......Page 133
4.2.1.1.1.11 Xie and Fang Distribution......Page 134
4.2.1.1.2 Single-State Second-Order Characterization......Page 135
4.2.1.1.2.1 Doppler Spectrum......Page 136
4.2.1.1.2.2 Level Crossing Rate and Average Fade Duration......Page 137
4.2.1.1.2.3 Fade and Non-fade Duration Statistics......Page 138
4.2.1.2.1 Lutz Model......Page 139
4.2.1.2.3 Vucetic and Du Model......Page 141
4.2.1.2.7 Wakana model......Page 142
4.2.2.1 DLR Wideband Model......Page 143
4.2.2.3 IMR Channel Model......Page 144
4.3.1 Uncoded Transmission over LMS Channels......Page 145
4.3.1.2 M-ary Orthogonal Noncoherent Detection......Page 146
4.3.2 Coded Transmission over LMS Channels......Page 147
4.3.2.1 Pseudo-coherent BPSK Detection......Page 148
4.3.2.2 Non-coherent M-ary Detection......Page 150
4.3.2.3 Convolutional Code Performance Analysis......Page 151
4.3.2.4 Turbo Code Performance Analysis......Page 155
4.4 Conclusions......Page 156
References......Page 157
Abstract......Page 161
5.1.1 Importance of Velocity Estimation......Page 162
5.1.2 Existing Velocity Estimators......Page 164
5.2.1 Received Signal Model......Page 165
5.2.2 Multipath Component Model......Page 166
5.2.4 Statistics of the Multipath Fading......Page 167
Example 5.2 Rate of Maxima Method......Page 169
Example 5.4 Covariance-Based Method......Page 170
Example 5.1 LCR Estimator......Page 171
5.4 Performance Analysis of Velocity Estimators......Page 172
5.4.2.1 Derivation of the Normalized Bias......Page 173
5.4.2.2 Performance in the Presence of AWGN and Isotropic Scattering......Page 174
5.4.2.3 Performance in the Presence of Nonisotropic Scattering and in the Absence of AWGN......Page 175
5.5.1 Simulations of the Received Signal......Page 177
5.5.2 Simulation Results......Page 178
5.6.1 Existing Methods......Page 181
5.6.2 Envelope-Based Estimators......Page 182
5.7.1 Handover Decision Algorithms......Page 185
5.7.2 Effect of an Error in Velocity Estimation on the System’s Quality of Service......Page 186
Acknowledgments......Page 188
Appendix B: Effect of the Scattering Distribution on the ZCR Method......Page 189
Appendix C: SNR Improvement in the IF Estimator......Page 190
References......Page 191
Modulation Techniques for Wireless Communications......Page 195
Abstract......Page 196
6.1 Introduction......Page 197
6.2.1 Model for a Wireless Link......Page 199
6.2.2 Adaptation in Response to Path Loss/Shadowing......Page 200
6.2.3 Analytic Model for Fine-Scale Adaptation......Page 201
6.3.1 Information Theoretic Bounds......Page 203
6.3.2 Design for Uncoded Systems......Page 204
6.3.2.1 Design Rules......Page 205
6.3.2.2 Numerical Results......Page 206
6.3.3.2 Coding Structures with Moderate Prediction Error Statistics......Page 207
6.3.4.2 Performance Results......Page 208
6.4.1.1 MIMO Single-User Systems......Page 209
6.4.2 Adaptive Coded Modulation for MIMO Systems......Page 210
References......Page 211
Abstract......Page 215
7.1 Introduction......Page 216
7.2 System Model......Page 217
7.3 Craig’s Method......Page 218
7.4.1.1 The Structure......Page 219
7.4.1.2 Probability of Error Analysis......Page 220
7.4.2.2 Probability of Error Analysis......Page 221
7.4.3 The (5,11) Constellation Format......Page 222
7.4.4 The (6,10) Constellation Format......Page 223
7.4.5.1 The Structure......Page 224
7.4.5.2 Probability of Error Analysis......Page 225
7.4.6 The Effect of Nonlinearity and the Application of a Predistortion Technique......Page 226
7.4.7 Total Degradation......Page 228
7.4.8 Results and Discussions......Page 229
7.5.1 The (4,11,17) Constellation Format......Page 234
7.5.2 The (5,11,16) Constellation Format......Page 236
7.5.3.1 The Structure......Page 237
7.5.3.2 Probability of Error Analysis......Page 238
7.5.5 Results and Discussions......Page 242
TWT Based on the Saleh Model [Sal81]......Page 244
References......Page 245
8.1 Introduction......Page 246
8.2 Basics of OFDM......Page 247
8.2.1 OFDM Modulation......Page 248
8.2.2 Demodulation......Page 249
8.3 Effect of CFO on System Performance......Page 251
8.4 Carrier Frequency Offset Estimation......Page 252
8.5.1 Nonlinear Least Squares Method......Page 253
8.5.2.1 Approximate NLS Estimator......Page 254
8.6 Null-Subcarrier-Based CFO Estimation......Page 255
8.6.1 Deterministic Maximum Likelihood Estimation......Page 256
8.6.2.2 Virtual Subcarriers Present......Page 257
8.7 Identifiability......Page 258
8.8.1 The Conditional CRB......Page 260
8.8.3 Optimal Choice of Null-Subcarriers......Page 261
8.9 Simulation Results......Page 262
Appendix: Conditional CRB......Page 264
References......Page 265
Abstract......Page 268
9.1 Introduction......Page 269
9.2.1 Orthogonality Conditions......Page 271
9.2.2 Efficient Implementation......Page 272
9.2.3 Example of Critically-Sampled Filter Bank......Page 275
9.3 Discrete Multitone Modulation......Page 276
9.4 O-QAM OFDM Modulation......Page 278
9.5 Discrete Wavelet Multitone Modulation......Page 283
9.6 Filtered Multitone Modulation......Page 284
9.6.1 Filter-bank Design......Page 288
9.6.2 Per-Subchannel Adaptive Equalization and Precoding......Page 291
References......Page 294
Multiple Access Techniques......Page 297
Spread-Spectrum Techniques for Mobile Communications......Page 298
10.1.2 2G and 3G Cellular Systems......Page 299
10.1.3 DSP Components for Wireless Communications......Page 300
10.2.1 Narrowband......Page 301
10.2.4 Direct-Sequence Spread Spectrum......Page 302
10.2.8 DS/SS Bandwidth Occupancy......Page 303
10.2.12 Processing Gain......Page 304
10.2.14 Basic Architecture of a DS/SS Modem......Page 305
10.3.1 Frequency-, Time-, and Code-Division Multiplexing......Page 307
10.3.3 Multiple Access Interference......Page 309
10.3.4 Capacity of a CDMA System......Page 310
10.4 A Review of 2G and 3G Standards for CDMA Mobile Communications......Page 311
10.4.2 UMTS/UTRA......Page 312
10.4.3 cdma2000......Page 314
10.5.2 Code Synchronization......Page 315
10.5.3 Carrier Frequency and Phase Synchronization......Page 317
10.6.1 IF vs. Baseband Sampling......Page 318
10.6.3 Rake Receiver......Page 319
10.7.1 Multiuser Detection in the UL......Page 321
10.7.2 The Decorrelating and MMSE Detectors......Page 323
10.8.1 The Challenge to Mobile Spread-Spectrum Communications......Page 324
10.8.2 4G Wireless Communications Systems......Page 325
References......Page 326
Abstract......Page 329
11.2.1 The Fading Channel Model......Page 330
11.2.2 Transmitted Signal Model......Page 332
11.2.3 Continuous-Time Received Signal Model......Page 333
11.3 Multiuser Detection with Known CSI......Page 334
11.3.1 Conventional Single-User Detection......Page 335
11.3.2 Optimum Multiuser Detection......Page 336
11.3.3.1 The Decorrelating Detector......Page 338
11.3.3.2 Remarks......Page 340
11.3.3.3 The MMSE Detector......Page 341
11.3.3.4 Remarks on the MMSE Detector......Page 342
11.3.4 Approximate MMSE Detection: Linear Serial Interference Cancellation......Page 343
11.3.5 Constrained ML Detection: Nonlinear Serial Interference Cancellation......Page 344
11.3.6.1 Analysis......Page 345
11.3.7 Some Numerical Results......Page 350
11.3.8 Sliding-Window One-Shot Multiuser Receivers......Page 352
11.4.1 Signal Representation in Unknown CSI......Page 353
11.4.3 Channel Estimation Based on the Least Squares Criterion......Page 356
11.4.4 Trained Adaptive Code-Aided Symbol Detection......Page 358
11.4.5 Code-Aided Joint Blind Multiuser Detection and Equalization......Page 361
11.4.6 Subspace-Based Blind MMSE Detection......Page 362
11.4.8 Two-Stage Blind Detection......Page 363
11.4.9 Performance Results......Page 364
References......Page 366
MIMO Systems......Page 368
12.1 Introduction......Page 369
12.2.1 Basic Assumptions......Page 370
12.2.3 Fading Statistics......Page 371
12.3.1 MIMO-OFDM......Page 372
12.3.3 Impact of Propagation Parameters on Capacity......Page 374
12.3.3.3 Ergodic Capacity in the SISO and MIMO Cases......Page 375
12.4.1 Space--Frequency Coding......Page 377
12.4.3.1 Rayleigh Fading......Page 379
12.4.3.1.2 Transmit Correlation Only......Page 380
12.4.3.2 Ricean Fading......Page 381
12.5.1.1 Impact of Cluster Angle Spread......Page 382
12.5.1.2 Impact of Total Angle Spread......Page 383
12.5.2.2 Simulation Example 2......Page 384
12.5.2.4 Simulation Example 4......Page 386
12.5.2.4.2 Delay Diversity Combined with Convolutional Code......Page 388
References......Page 389
13.1 Introduction......Page 391
13.2 Broadband Wireless Channel Model......Page 393
13.3.2 Diversity Order......Page 395
13.3.3 Design Criteria for Space--Time Codes over Flat-Fading Channels......Page 396
13.4.1.1 Spatial Multiplexing (BLAST)......Page 397
13.4.1.2 Transmit Diversity Techniques......Page 398
13.4.1.3 Space--Time Coding......Page 399
13.4.1.3.1 Space–Time Trellis Codes......Page 400
13.4.1.3.2 Alamouti-Type Space–Time Block Codes......Page 401
13.4.1.4 Diversity vs. Throughput Trade-Off......Page 402
13.4.2 Receiver Techniques......Page 403
13.4.2.1.1 Channel Estimation for Quasi-Static Channels......Page 404
13.4.2.1.3 Joint Equalization/Decoding of Space–Time Trellis Codes......Page 405
13.4.2.1.4 Joint Equalization/Decoding of Space–Time Block Codes......Page 406
13.4.2.1.6 Joint Equalization and Interference Cancellation......Page 408
13.4.2.1.7 Adaptive Techniques......Page 410
13.4.2.2 Noncoherent Techniques......Page 411
13.5 Summary and Future Challenges......Page 413
References......Page 414
14.1 Introduction......Page 418
14.1.1 System Model......Page 419
14.2 Optimum Precoding......Page 420
14.2.1 Jointly Optimum Design and Performance Bounds......Page 421
14.2.1.1 MMSE Criterion under Transmit Power and Maximum Eigenvalue Constraint......Page 422
14.2.1.2 Maximum λmin(SNR(F, G)) under Power and Maximum Eigenvalue Constraints......Page 423
14.2.1.3 Equivalent Decomposition into Independent Subchannels......Page 424
14.2.1.4 Performance Measures......Page 425
14.3.1 Differential Forms and Random Matrix Techniques......Page 427
14.3.2 The Statistics of the Capacity......Page 431
14.4 Channel Estimation for MIMO Systems Using Precoding Techniques......Page 436
14.4.1 Channel Estimation Algorithm......Page 437
14.4.2 Cramer--Rao Lower Bound......Page 439
14.4.3 Numerical Results......Page 440
References......Page 441
Abstract......Page 444
15.1 Introduction......Page 445
15.2.2.1 Rician Fading......Page 446
15.2.2.2 I.i.d. Rician Fading and i.i.d. Rayleigh Fading Channels......Page 447
15.2.2.3 Correlated Rayleigh Fading Channels......Page 448
15.2.2.4 Capacity CCDF......Page 453
15.2.3.1 System Models and Problem Statement......Page 455
15.2.3.2 MIMO MRC Systems Outage Probability......Page 456
15.2.4.1 Water-Filling Capacity......Page 457
15.2.4.2 Beam-Forming Performance......Page 459
15.3.1 Problem Statement......Page 462
15.3.2 Capacity CCDF of MIMO Optimum Combining Scheme with Perfect CSI at Transmitter......Page 463
15.3.2.1 Outage Probability......Page 464
15.3.3.1 Problem Statement......Page 467
15.3.3.2 Capacity MGF......Page 468
15.3.4 Rician/Rayleigh Fading Scenarios in an Interference- Limited Environment......Page 471
Appendix A: Some Integral Identities......Page 473
References......Page 474
Equalization and Receiver Design......Page 476
16.1 Introduction......Page 477
16.2 Wireless Channel Model......Page 478
16.2.2 TV Channels......Page 480
16.3 System Model......Page 482
16.4 Block Equalization......Page 483
16.4.1 Block Linear Equalization......Page 484
16.4.2 Block Decision Feedback Equalization......Page 485
16.5.1 TIV Channels......Page 486
16.5.2 TV Channels......Page 488
16.5.3 Equalizer Design......Page 489
16.6 Serial Decision Feedback Equalization......Page 490
16.6.2 TV Channels......Page 491
16.6.3 Equalizer Design......Page 492
16.7 Frequency-Domain Equalization for TIV Channels......Page 493
16.7.2 FD Decision Feedback Equalization......Page 494
16.8.2 Decision Feedback Equalizers......Page 497
16.9.1 Design Complexity......Page 498
16.10 Channel Estimation and Direct Equalizer Design......Page 499
16.11.1 TIV Channels......Page 500
16.11.2 TV Channels......Page 502
Acknowledgments......Page 503
References......Page 504
Abstract......Page 507
17.1 Introduction......Page 508
17.2.1 System Model......Page 509
17.3 Dual-Branch Switch and Stay Combining......Page 510
17.3.1 Dual-Branch SSC Schemes......Page 511
17.3.2 Markov Chain-Based Analysis......Page 512
17.3.3 Statistics of Overall Combiner Output......Page 514
17.3.4 Application to Performance Analysis and Comparisons......Page 516
17.4.1 L-Branch SSC......Page 520
17.4.2 L-Branch SEC......Page 521
17.5.1 Mode of Operation of GSEC......Page 526
17.5.2 MGF of Combiner Output......Page 527
17.5.3 Application to Performance Analysis......Page 529
17.5.4 Complexity Savings over GSC......Page 532
References......Page 534
18.1 Introduction......Page 536
18.2.1 General Framework......Page 537
18.2.2 Simulation Framework......Page 538
18.3.1 Block Linear Equalizers......Page 539
18.3.2 Block Decision-Feedback Equalizers......Page 540
18.3.2.1 Simulation Results......Page 542
18.4.1.2 Generalized Viterbi Algorithm......Page 543
18.4.1.3 List-Type MAP Algorithm......Page 544
18.4.2 Generalization to the MIMO Case......Page 545
18.4.3 Simulation Results......Page 546
18.5.1 Whitened Matched Filter......Page 547
18.5.3 WMF Implementation Using Linear Prediction......Page 548
18.5.4 Energy Concentration......Page 549
18.5.5 Simulation Results......Page 551
18.6.1 Complexity Comparison......Page 552
18.6.2 Performance Comparison......Page 553
18.7 Conclusion......Page 554
References......Page 555
19.1 Introduction......Page 557
19.2 Identification of Memoryless Nonlinear Amplifiers......Page 560
19.2.1 Natural Gradient Learning......Page 561
19.2.2 Influence of the HPA Modeling Error on the Symbol- Error- Rate Performance......Page 563
19.2.3 Application to Adaptive Predistortion......Page 566
19.3.1 Neural Network Channel Identification......Page 571
19.3.2 Learning Algorithm......Page 572
19.3.4 Simulation Examples......Page 573
19.4.1 Neural Network Structure......Page 577
19.4.3 NG Algorithm......Page 579
19.5 Conclusion......Page 580
References......Page 581
Appendix......Page 583
Voice over IP......Page 585
Abstract......Page 586
20.2.1 Some Preliminary Notions......Page 587
20.2.2.1 Differential Coding......Page 588
20.2.2.3 Noise Masking......Page 589
20.2.3.3 Hybrid Coders......Page 590
20.2.3.4.1 Bit Rate......Page 591
20.3.1 An Overview......Page 592
20.3.2.3 Throughput......Page 593
20.3.4 Standard Speech Coders for VoIP......Page 594
20.3.5 Packet loss Recovery Techniques......Page 595
20.4.1 Wireless Voice Communications Systems......Page 596
20.4.2.5 Unequal Error Protection (UEP)......Page 597
20.4.3.1 European GSM and UMTS Standards......Page 598
20.4.4.1 Joint Channel--Source Coding......Page 599
20.5 Voice over IP over Wireless......Page 600
20.6.2 Technologies for Voice-Enabled Interfaces......Page 601
20.6.3.1 Local or Terminal-Based Speech Recognition......Page 602
20.6.3.3 Distributed Speech Recognition......Page 603
20.6.5 ASR over Wireless......Page 604
20.6.5.3 Transmission Errors and Lost Frames......Page 605
List of Acronyms and Abbreviations......Page 606
References......Page 608
Wireless Geolocation Techniques......Page 611
21.1 Introduction......Page 612
21.1.2 Location-Based Services (LBS)......Page 613
21.2 Geolocation Methods......Page 614
21.3.1 Geometric Solutions......Page 616
21.3.2 Least Squares Estimation......Page 618
21.3.4 Hybrid Location Methods......Page 620
21.3.5 Performance......Page 621
21.4.1 AOA Estimation......Page 623
21.4.3 Range Difference Estimation......Page 624
21.5.1 Multipath Propagation......Page 625
21.5.3 Non-Line-of-Sight Propagation......Page 626
21.6.1 3G Location Solutions......Page 628
21.7 Summary......Page 629
References......Page 630
22.1 Introduction......Page 635
22.2 GPS Signal Model......Page 639
22.3.1 Broadband Interference Suppression Using Space--Time Array......Page 640
22.3.1.2 MMSE......Page 641
22.3.1.4 Signal Distortion Introduced by Processor......Page 642
22.3.2 Narrowband FM Interference Suppression Using Time-- Frequency Method......Page 643
22.3.3 A Self-Coherence Antijamming GPS Receiver......Page 647
22.4.1 Bias Due to Signal Multipath......Page 653
22.4.1.1 Early--Late Discrimination Functions......Page 654
22.4.1.2 Time-Delay Estimation......Page 655
22.4.3 Time-Delay and Carrier-Phase Estimation Using Antenna Array......Page 656
References......Page 658
Power Control and Wireless Networking......Page 661
23.1 Introduction......Page 662
23.2.1 The Target SIR Formulation of the Power Control Problem......Page 664
23.2.1.1 Example of the Simple Two-Link Network......Page 665
23.2.1.2 The Optimal Power Vector P*......Page 667
23.2.2 Autonomous Distributed Power Control......Page 668
23.2.3 DPC with Active Link Protection......Page 669
23.2.4 Admission Control under DPC/ALP......Page 671
23.2.4.2 Forced Dropout......Page 674
23.2.5 Noninvasive Channel Probing and Selection......Page 675
23.3.1 Power-Controlled Multiple Access: The Basic Model......Page 676
23.3.2 Optimally Emptying the Transmitter Buffer......Page 677
23.3.3 The Case of Per-Slot-Independent Interference......Page 678
23.3.4 Structural Properties: Backlog Pressure and Phased Back-Off......Page 679
23.3.5 Design of PCMA Algorithms: Responsive Interference......Page 680
References......Page 681
24.1 Introduction......Page 683
24.2.1 The Model......Page 684
24.2.3 The Training-Based Zero-Forcing Receiver......Page 686
24.2.4 The Semiblind Least Squares Smoothing Receiver......Page 687
24.2.5 Further Remarks......Page 689
24.3.1 Channel Reception Matrix......Page 690
24.3.2 Resolvability......Page 691
24.3.4 Further Remarks......Page 692
24.4.2 Network Performance Comparison......Page 693
24.4.3 Further Remarks......Page 694
24.5.2 The Multiqueue Service Room Protocol......Page 695
24.5.3 The Dynamic Queue Protocol......Page 696
24.5.4 Further Remarks......Page 697
24.6 Approach High Performance from Both Physical and MAC Layers......Page 698
References......Page 699
Emerging Techniques and Applications......Page 701
Abstract......Page 702
25.1 Introduction......Page 703
25.2.2.1 Finding Hidden Information Using Time--Frequency Representations......Page 704
25.2.2.2 What Is a Time--Frequency Representation?......Page 705
25.2.2.2.2 Instantaneous Frequency and Group Delay......Page 707
25.2.3.1 Time-Varying Spectrum and the Wigner--Ville Distribution......Page 708
25.2.3.2 Time-Varying Spectrum Estimates and Quadratic TFDs......Page 709
25.2.3.3 Time, Lag, Frequency, and Doppler Domains and the Ambiguity Function......Page 710
25.2.3.4 Quadratic TFDs, Multicomponent Signals, Cross-Terms Reduction, and Criteria for the Design of Quadratic TFDs......Page 712
25.2.3.4.2 Comparison of Quadratic TFDs......Page 713
25.3.1 Channel Modeling and Identification......Page 714
25.3.1.1 Wireless Communication LTV Channel Model......Page 715
25.3.1.2 Estimation of LTV channels......Page 717
25.3.1.3 Estimation of Scattering Function......Page 718
25.3.2.1 TV-NBI Suppression in DS-CDMA......Page 719
25.3.2.2 Signal Modulation Design for ISI Mitigation......Page 720
25.3.2.3 Multiple-Access Interference in MC-CDMA......Page 722
25.4 Time--Frequency Array Signal Processing......Page 723
25.4.1 The Spatial Time--Frequency Distributions......Page 724
25.4.1.2 Structure under Unitary Model......Page 725
25.4.3 Advantages of STFDs over Covariance Matrix......Page 726
25.4.4 Selection of Autoterms and Cross-Terms in the Time-- Frequency Domain......Page 727
25.4.5 Time--Frequency Direction-of-Arrival Estimation......Page 728
25.4.6 Time--Frequency Source Separation......Page 729
25.4.6.1 Separation of Instantaneous Mixture......Page 730
25.4.6.3 Separation of Convolutive Mixtures......Page 731
25.4.6.4 STFD-Based Separation......Page 732
25.5.2 Signaling Using Chirp Modulation......Page 733
25.5.3 Detection of FM Signals in Rayleigh Fading......Page 734
25.5.4 Mobile Velocity/Doppler Estimation Using Time-- Frequency Processing......Page 735
References......Page 736
Abstract......Page 743
26.1 Introduction......Page 744
26.2.1.1 Metropolis--Hastings Algorithm......Page 745
26.2.1.3 Other Techniques......Page 746
26.2.2.1 MCMC Detectors in AWGN Channels......Page 747
26.2.2.2 MCMC Equalizers in ISI Channels......Page 749
26.2.2.3 MCMC Multiuser Detector in CDMA Channels......Page 751
26.3.1.1 Sequential Importance Sampling......Page 753
26.3.1.2 SMC for Dynamic Systems......Page 755
26.3.1.3 Mixture Kalman Filter......Page 756
26.3.2 Resampling Procedures......Page 757
26.3.3.1 SMC Receiver in Flat-Fading Channels......Page 759
26.3.3.2 SMC Receiver in MIMO ISI Channels......Page 761
References......Page 765
27.1.1 Nonlinear Dynamic Systems......Page 768
27.1.2.1 Probability Density Functions......Page 770
27.1.2.2 Autocovariance and Autocorrelation Function......Page 771
27.1.3.2 Bit Stream Generators......Page 774
27.1.4 Properties of Chaotic Signals......Page 775
27.2 Communication: Requirements and Resources......Page 776
27.4 Communication Using Broadband Chaotic Carriers......Page 777
27.4.1.1.1 Chaotic Masking......Page 778
27.4.1.1.3 Chaotic On-Off Keying......Page 779
27.4.1.1.5 Analysis of Schemes with Static Encoding/Modulation......Page 780
27.4.1.2.2 Encoding Messages into the Symbolic Dynamics of Chaos Generators......Page 781
27.4.2.1.1 Reference Generation by Drive Response Synchronization......Page 782
27.4.2.1.3 Demodulation Using Reference Signals: Application Examples......Page 783
27.4.2.3 Inverse System Principles......Page 785
27.5 Chaos for Spreading Code Generation......Page 786
27.6.1.1 The Analysis Problem......Page 787
27.6.1.2.1 Discrete-Time Baseband Modeling......Page 788
27.6.1.2.2 Statistical Analysis of Nonlinear Discrete-Time Baseband Models......Page 789
27.6.1.3.2 Baseband Signal Models......Page 790
27.6.1.3.4 Results of the Statistical Analysis: Exact Solutions......Page 791
27.6.2 Chaos Communication Methods in Comparison to Classical Solutions......Page 792
References......Page 793
Abstract......Page 796
28.1 Introduction......Page 797
28.2 Overview of Adaptation Schemes......Page 798
28.2.1 Link and Transmitter Adaptation......Page 799
28.2.3 Receiver Adaptation......Page 800
28.3.1.1 Time Selectivity Measure: Doppler Spread......Page 801
28.3.1.2 Frequency Selectivity Measure: Delay Spread......Page 803
28.3.1.3 Spatial Selectivity Measure: Angle Spread......Page 804
28.3.2 Channel Quality Measurements......Page 805
28.3.2.2 Measures during and after Demodulation......Page 806
28.3.2.4 Measures after Speech or Video Decoding......Page 808
28.4.1.1 Channel Estimation with A Priori Information......Page 809
28.4.1.3 Adaptive Interference Cancellation Receivers......Page 810
28.4.1.4 Adaptive Soft Information Generation and Decoding......Page 811
28.4.2.2 Adaptive Modulation and Channel Coding......Page 812
28.4.2.3 Adaptive Cell and Frequency Assignment......Page 814
28.5 Future Research for Adaptation......Page 815
28.6 Conclusion......Page 817
References......Page 818