Shock Wave Science and Technology Reference Library, Vol.4: Heterogeneous Detonation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is the fourth of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and high-velocity impact and penetration events. The six extensive chapters in this volume are more specifically concerned with detonation and shock compression waves in reactive heterogenous media, including mixtures of solid, liquid and gas phases: Spray Detonation (SB Murray and PA Thibault); Detonation of Gas Particle Flow (F Zhang); Slurry Detonation (DL Frost and F Zhang); Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov); Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov); Shock Ignition of Particles (SM Frolov and AV Fedorov). All chapters are each self-contained, and can be read independently of each other. They offer a timely reference, for beginners as well as professional scientists and engineers, on the foundations of detonation phenomena, high strain rate response behavior, and on the burgeoning developments as well as challenging unsolved problems.

Author(s): F. Zhang
Edition: 1
Year: 2009

Language: English
Pages: 408
Tags: Механика;Механика жидкостей и газов;Гидрогазодинамика;Shock Wave Science and Technology Reference Library;

Contents......Page 10
Preface......Page 6
1.1 Introduction......Page 15
1.2.1 Detonability Studies in Tubes and Chambers......Page 16
1.2.2 Structure of Spray Detonations and Velocity Deficits......Page 21
1.3.1 Sprays Created by Low-Pressure Nozzles......Page 29
1.3.2 Sprays Created by Explosively Driven Nozzles......Page 33
1.3.3 Sprays Created Explosively in "Trough Tests"......Page 40
1.3.4 Sprays Created by Explosive Dispersal from Canisters......Page 44
1.3.5 Sprays Created by Explosive Dispersal from Hoses......Page 56
1.4.1 Fundamental Chemical Initiation Studies......Page 65
1.4.2 Single-Event FAE Device Studies......Page 68
1.5 Detonation Propulsion Studies......Page 73
1.6 Modelling of Spray Detonation and Explosive Liquid Dispersal......Page 77
1.6.1 Spray Detonation Modelling Studies......Page 78
1.6.2 Modelling of Explosive Liquid Dispersal......Page 83
1.7 Concluding Remarks......Page 87
References......Page 91
2.1 Introduction......Page 101
2.2.1 Equilibrium CJ Detonation Model......Page 104
2.2.2 Two-Phase ZND Detonation Model......Page 106
2.2.3 Unsteady Two-Phase Fluid Dynamics Model......Page 115
2.3.1 Progressive DDT......Page 122
2.3.2 Abrupt DDT......Page 124
2.3.3 Transition to Detonation Near the End Wall......Page 131
2.3.4 Initiation of Unconfined Detonation......Page 132
2.3.5 Detonation Velocity and Pressure......Page 135
2.4.1 Spinning and Cellular Detonation......Page 138
2.4.2 Detonation Dynamic Parameters......Page 140
2.5 Quasi-Detonation in Tubes......Page 145
2.6.1 Hybrid Detonation Modes......Page 148
2.6.2 Influencing Factors......Page 156
2.7 Concluding Remarks......Page 160
A. Two-Phase Fluid Dynamics Equations......Page 161
B. Equations of State......Page 163
C. Interphase Transfers......Page 167
References......Page 175
3.1 Introduction......Page 183
3.1.1 Definitions of Slurry Blasting Agents and Explosives......Page 184
3.1.3 Historical Development of Slurry Explosives......Page 185
3.2.2 Procedure for Generating Water–Gel Slurry and Emulsion Explosives......Page 186
3.2.3 Fuel-Rich Slurry Explosive Formulations......Page 187
3.3 Explosive Properties of Slurry Explosives......Page 188
3.3.1 Equilibrium Thermodynamics......Page 189
3.3.2 Detonation Velocity of Emulsion Explosives......Page 191
3.3.3 Hot-Spot Sensitization in Emulsion Explosives......Page 195
3.3.4 Impact Sensitivity of Emulsion Explosives......Page 196
3.3.5 Nitromethane Slurry Explosives......Page 198
3.4.2 Zeldovich–von Neumann–Döring Model......Page 210
3.4.3 Detonation Shock Dynamics......Page 211
3.4.4 Mesoscale Continuum Modeling......Page 212
3.5 Concluding Remarks......Page 224
References......Page 225
4.1 Introduction......Page 231
4.2.1 DV in Metalized Explosives......Page 233
4.2.2 DV in Aluminized Explosives......Page 238
4.3 Pressure and Temperature Time Histories......Page 249
4.3.1 HMX-Based Explosives......Page 250
4.3.2 NQ-Based Explosives......Page 261
4.3.3 BTNEN-Based Explosives......Page 263
4.4.1 Plate Acceleration......Page 265
4.5 Heat of Explosion......Page 269
4.6.1 ADN and Nanometric Al Formulations......Page 275
4.6.2 HMX and Nanometric Al Formulations......Page 282
4.7 Concluding Remarks......Page 289
Appendix......Page 292
References......Page 293
5.1 Introduction......Page 301
5.2.2 Temperature Measurements......Page 302
5.2.3 Kinematic Measurements......Page 304
5.2.4 Mechanical Consequences in Recovery Ampoules......Page 305
5.2.5 Solid–Solid Syntheses......Page 306
5.2.6 Mechanism of Ultrafast Diffusion......Page 309
5.3.1 Initiation of Detonation......Page 310
5.3.2 Direct Measurement of Detonation Velocity......Page 311
5.4.1 Basic Assumptions......Page 314
5.4.2 Thermal Effects of Physicochemical Transformation......Page 315
5.4.3 Shock Equations......Page 318
5.4.4 The Role of Thermal Effects in Laminar Motion of Reacting Matter......Page 320
5.4.5 Thermal Criterion for Shock or Detonation......Page 322
References......Page 324
6.1 Introduction......Page 329
6.2.1 Experimental and Theoretical Findings......Page 331
6.2.2 Static Conditions......Page 334
6.2.3 Dynamic Conditions......Page 353
6.3.1 Drop Deformation......Page 361
6.3.2 Single Drop Vaporization......Page 363
6.3.3 Drop Breakup......Page 372
6.3.4 Cloud of Breakup Fragments......Page 374
6.3.5 Vaporization of Drops in Clouds......Page 375
6.3.6 Kinetic Mechanisms of Drop Ignition and Combustion......Page 379
6.3.7 High-Temperature Drop Ignition......Page 380
6.3.8 Low-Temperature Drop Ignition......Page 383
6.3.9 Ignition of Disintegrating Drops......Page 387
6.4 Concluding Remarks......Page 388
References......Page 389
C......Page 399
E......Page 400
I......Page 401
O......Page 402
S......Page 403
Z......Page 404