Set Theory with a Universal Set: Exploring an Untyped Universe

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Increasing interest in set theory, particularly the possibility of a set of all sets ("universal set"), has been stimulated by its relevance to computer science. This new edition, drawing heavily on Quine's theories as introduced in New Foundations, provides an accessible introduction of universal set theory to mathematicians, logicians, and philosophers. Included are expanded accounts of the set theories of Church, Oswald and Mitchell, with descriptions of permutation models and extensions that preserve power

Author(s): T. E. Forster
Series: Oxford Logic Guides 31
Edition: 2nd
Publisher: Oxford University Press
Year: 1995

Language: English
Pages: 177

Cover......Page 1
Title......Page 2
Series......Page 3
Copyright......Page 5
Preface to the First Edition......Page 6
Preface to the Second Edition......Page 8
Contents......Page 10
1 – Introduction......Page 12
1.1 Annotated definitions......Page 15
1.1.1 Quantifier hierarchies......Page 16
1.1.2 Mainly concerning type theory......Page 17
1.1.3 Other definitions......Page 20
1.1.4 Theories......Page 21
1.2.1 Sets as predicates-in-extension......Page 22
1.2.2 Sets as natural kinds......Page 32
1.3 A brief survey......Page 33
1.4 How do theories with V ∈ V avoid the paradoxes?......Page 35
1.5 Chronology......Page 36
2.1 NF......Page 37
2.1.1 The axiom of counting......Page 41
2.1.2 Boffa’s lemma on n-formulae, and the automorphism lemma for set abstracts......Page 44
2.1.3 Miscellaneous combinatorics......Page 46
2.1.4 Well-founded sets......Page 51
2.2 Cardinal and ordinal arithmetic......Page 55
2.2.1 Some remarks on inductive definitions......Page 66
2.2.2 Closure properties of small sets......Page 68
2.3 The Kaye-Specker equiconsistency lemma......Page 69
2.3.1 NF₃......Page 76
2.3.2 NFU......Page 78
2.3.4 KF......Page 83
2.4 Subsystems, term models, and prefix classes......Page 94
2.5 The converse consistency problem......Page 100
3 – Permutation Models......Page 103
3.1 Permutations in NF......Page 107
3.1.1 Inner permutations in NF......Page 108
3.1.2 Outer automorphisms in NF......Page 130
3.2 Applications to other theories......Page 132
4.1 Oswald’s model......Page 133
4.2 Low sets......Page 135
4.2.1 Other definitions of low......Page 136
4.3.1 P-extensions......Page 137
4.3.2 Hereditarily low sets and permutation models......Page 138
4.3.3 Permutation models of CO structures......Page 140
4.4.1 An elementary example......Page 141
4.4.2 P-extending models of Zermelo to models of NFO......Page 143
4.5 Church’s model......Page 147
4.6 Mitchell’s set theory......Page 150
4.7 Conclusions......Page 151
5.1 Permutation models and quantifier hierarchies......Page 154
5.3 KF......Page 155
5.5 Well-founded extensional relations......Page 156
5. 7 Miscellaneous......Page 157
Concerning set theory with a universal set......Page 159
Concerning other matters raised in the text......Page 169
Index of Definitions......Page 172
Author Index......Page 174
General Index......Page 175