Set Theory, Arithmetic, and Foundations of Mathematics: Theorems, Philosophies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This collection of papers from various areas of mathematical logic showcases the remarkable breadth and richness of the field. Leading authors reveal how contemporary technical results touch upon foundational questions about the nature of mathematics. Highlights of the volume include: a history of Tennenbaum's theorem in arithmetic; a number of papers on Tennenbaum phenomena in weak arithmetics as well as on other aspects of arithmetics, such as interpretability; the transcript of Gödel's previously unpublished 1972-1975 conversations with Sue Toledo, along with an appreciation of the same by Curtis Franks; Hugh Woodin's paper arguing against the generic multiverse view; Anne Troelstra's history of intuitionism through 1991; and Aki Kanamori's history of the Suslin problem in set theory. The book provides a historical and philosophical treatment of particular theorems in arithmetic and set theory, and is ideal for researchers and graduate students in mathematical logic and philosophy of mathematics.

Author(s): Juliette Kennedy, Roman Kossak (eds.)
Series: Lecture Notes in Logic 36
Publisher: Cambridge University Press
Year: 2011

Language: English
Pages: 243

Cover......Page 1
Title......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 9
Introduction......Page 11
§1. Suslin’s problem.......Page 17
§2. Consistency of ¬SH.......Page 20
§3. Consistency of SH.......Page 21
§4. Envoi.......Page 25
REFERENCES......Page 26
§1. A tale of two problems......Page 29
§2. The generic-multiverse of sets.......Page 30
§3. Ω-log......Page 35
§4. The Ω conjecture.......Page 37
§5. The complexity of Ω-logic.......Page 39
§6. The weak multiverse laws and H(c+).......Page 40
§7. Conclusions.......Page 42
§8. Appendix.......Page 47
REFERENCES......Page 58
§1. Introduction.......Page 59
§2. Preliminaries.......Page 61
§3. Building ω-models.......Page 65
§4. Models with special properties.......Page 72
§5. ZFfin and PA are not bi-interpretable.......Page 77
§6. Concluding remarks and open questions.......Page 79
REFERENCES......Page 80
§1. Some historical background.......Page 82
§2. Tennenbaum’s theorem.......Page 84
§3. Diophantine problems.......Page 89
REFERENCES......Page 93
§1. Introduction.......Page 96
§2. Preliminaries.......Page 98
3.1. Proof of Theorem A......Page 100
3.2. Proof of Theorem B.......Page 105
3.3. Proofs of Theorems C and D.......Page 106
REFERENCES......Page 108
Background.......Page 109
Wilkie’s theorems and the models of Berarducci and Otero.......Page 110
§1. Axioms for DOI.......Page 112
§2. Diophantine correct rings of Puiseux polynomials......Page 116
Special sequences of polynomials.......Page 120
Theorems on generalized polynomials.......Page 122
§4. A Class of Diophantine correct ordered rings.......Page 123
REFERENCES......Page 127
Tennenbaum’s theorem and recursive reducts......Page 128
§0. Conventions.......Page 130
§1. Rich theories.......Page 131
§2. Thin theories.......Page 134
§3. Examples.......Page 138
§4. Some 1-thin theories.......Page 145
§5. More about LO.......Page 155
REFERENCES......Page 163
§1. Introduction.......Page 166
2.1. Finitist mathematics.......Page 167
2.2. Actualism.......Page 168
3.1. Poincaré.......Page 169
3.2. The semi-intuitionists.......Page 170
3.3. Borel and the continuum.......Page 171
3.4. Weyl.......Page 172
4.1. Early period.......Page 173
4.2. Weak counterexamples and the creative subject.......Page 174
4.3. Brouwer’s programme.......Page 175
5.1. L. E. J. Brouwer and intuitionistic logic.......Page 176
5.3. Formal intuitionistic logic and arithmetic through 1940.......Page 177
5.4. Metamathematics of intuitionistic logic and arithmetic after 1940.......Page 179
5.5. Formulas-as-types.......Page 181
6.1. Choice sequences in Brouwer’s writings.......Page 182
6.2. Axiomatization of intuitionistic analysis.......Page 184
7.1. Classical recursive mathematics.......Page 186
7.2. Constructive recursive mathematics.......Page 188
8.1. Bishop’s constructive mathematics.......Page 189
8.2. The relation of BCM to INT and CRM.......Page 190
§9. Concluding remarks.......Page 191
REFERENCES......Page 192
§1. Introduction:......Page 196
2.1. Murios.......Page 198
2.2. Apeirōn.......Page 202
§3. Recent history of UF.......Page 209
REFERENCES......Page 213
Husserl.Conversation March 3, 1972.......Page 216
Plato paper.......Page 219
Conversation August 21, 1974.......Page 220
Conversation Phone Nov 1.......Page 221
Gödel on Intuitionism.......Page 222
Stanley Tennenbaum’s Socrates......Page 224
REFERENCES......Page 241
Tennenbaum’s proof of the irrationality of v2......Page 242