Set Theory and Model Theory: Proceedings of an Informal Symposium Held at Bonn, June 1-3, 1979

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): R.B. Jensen, A. Prestel
Series: Lecture Notes in Mathematics, Vol. 872
Edition: 1981
Publisher: Springer
Year: 1981

Language: English
Pages: 178

Foreword......Page 3
Contents......Page 4
Morass-Like Constructions of א‎_2-Trees in L - Devlin......Page 5
1. Preliminaries......Page 6
2. Some Morass Theory......Page 8
3. A New Construction of a Souslin א‎_2-Tree......Page 23
4. A New Construction of a Kurepa א‎_2-Tree......Page 31
References......Page 40
Coarse Morasses in L - Donder......Page 41
1. Coarse gap-1 morasses......Page 42
2. The global coarse morass in L......Page 50
References......Page 58
Some Applications of the Core Model - Donder, Jensen, Koppelberg......Page 59
1. Partition cardinals in K......Page 62
2. Regularity and normality of ultrafilters......Page 71
3. Σ^1_3-absoluteness......Page 84
4. Decomposability of ultrafilters......Page 93
References......Page 101
A Lattice Structure on the Isomorphism Types of Complete Boolean Algebras - Koppelberg......Page 102
1. Decomposition of R(B) and T(B) into Products......Page 105
2. The lattice structure of T(B)......Page 112
3. Weakly homegeneous CBA's......Page 119
4. Some applications of Theorem C......Page 125
References......Page 129
Pseudo Real Closed Fields - Prestel......Page 131
0. Preliminaries......Page 133
1. Pseudo real closed fields......Page 137
2. The elementary theory of prc-fields with n orderings......Page 144
3. Algebraic extensions......Page 152
4. The class of prc-fields is elementary......Page 157
References......Page 160
1. Introduction......Page 161
2. Basic results on the existence of Σ_0-indiscernables......Page 164
3. Independence of the strengthened finite Ramsey theorem and applications of its proof......Page 168
4. Generalizations of α applying to higher prefixes......Page 175
References......Page 178