Author(s): Sabrie Soloman
Edition: 2nd ed
Publisher: McGraw-Hill
Year: 2010
Language: English
Pages: 625
City: New York
Contents......Page 8
Foreword......Page 26
Preface......Page 28
Acknowledgments......Page 32
1.0 Introduction......Page 36
1.2 Establishing an Automation Program......Page 40
1.3 Photo Sensing Fluorescence in Genome Sequencing......Page 42
1.5 Mapping RNA Protein Folding Energy Through Bio-Sensors......Page 43
1.7 Nano-Crystals Enable Scalable Memory Technologies......Page 44
1.8 Chromaticity—Color Rendering Index (CRI)......Page 45
1.10.3 Intensity......Page 50
1.11.3 LED Drivers......Page 54
1.11.10 LED mA......Page 55
1.11.12 mcd......Page 56
1.11.18 RGB......Page 57
1.12.3 UV-C......Page 58
1.12.9 Watts......Page 59
1.13 The Basics on LEDs......Page 60
1.13.1 Monochromatic LEDs......Page 61
1.13.2 LED White Light......Page 62
1.13.4 Visibility......Page 63
1.13.5 Operating Life......Page 64
1.14 Non-Phosphor White LEDs at a Viewing Angle of 30$#176;......Page 65
1.14.1 Non-Phosphor White LEDs......Page 66
1.15 Luminous Intensity (Candlepower)......Page 67
1.15.1 Luminous Flux......Page 68
1.15.3 Luminance (Brightness)......Page 69
1.15.4 Foot-Candle to Lux Conversion......Page 70
1.15.6 The Cosine Law......Page 71
1.15.8 Calculating Beam Angles......Page 72
1.15.11 Calculating Center, Middle, and Edge Points—Three Points......Page 73
1.16.1 Spectralon® Material—Light Refl ectance Calibration......Page 74
Further Reading......Page 75
2.0 Introduction......Page 78
2.1 Classification of Control Processes......Page 83
2.2 Open- and Closed-Loop Control Systems......Page 85
2.3.1 Principles of Operation......Page 86
2.3.2 Manufacturing Applications of Photodetectors......Page 87
2.4.2 The Reflex Detection Method......Page 93
2.4.3 The Proximity Detection Method......Page 94
2.5 Proximity Sensors......Page 96
2.5.1 Typical Applications of Inductive Proximity Sensors......Page 97
2.6.1 Principles of Operation......Page 99
2.6.2 Inductive Proximity Sensing Range......Page 102
2.6.3 Sensing Distance......Page 103
2.6.4 Target Material and Size......Page 104
2.6.5 Target Shape......Page 106
2.6.6 Variation Between Devices......Page 107
2.6.7 Surrounding Conditions......Page 108
2.7.1 Principles of Operation......Page 110
2.7.3 Sensing Range......Page 112
2.7.4 Target Material and Size......Page 113
2.8 Understanding Limit Switches......Page 114
2.9 Inductive and Capacitive Sensors in Manufacturing......Page 115
2.9.1 Relays......Page 116
2.9.2 Triac Devices......Page 117
2.9.3 Transistor DC Switches......Page 119
2.9.4 Inductive and Capacitive Control/Output Circuits......Page 120
2.9.5 Accessories for Sensor Circuits......Page 122
2.9.6 Inductive and Capacitive Switching Logic......Page 123
2.9.7 Inductive and Capacitive Sensor Response Time—Speed of Operation......Page 128
2.10.1 Characteristics of Microwave Sensors......Page 133
2.10.2 Principles of Operation......Page 134
2.10.3 Detecting Motion with Microwave Sensors......Page 135
2.10.4 Detecting Presence with Microwave Sensors......Page 139
2.10.6 Detecting Direction of Motion with Microwave Sensors......Page 140
2.10.7 Detecting Range with Microwave Sensors......Page 141
2.10.8 Microwave Technology Advancement......Page 144
2.11.1 Confocal Profiling Characterization Systems......Page 145
2.11.2 Driving Inspection Requirements......Page 146
2.12 Understanding Laser Sensors......Page 148
2.12.2 Essential Laser Components......Page 149
2.12.4 Industrial Applications of Laser Sensors......Page 154
Further Reading......Page 167
3.1 Photoelectric Sensors—Long-Distance Detection......Page 168
3.1.1 Light-Emitting Diodes......Page 169
3.1.2 Through-Beam Sensors......Page 171
3.1.3 Reflex Photoelectric Controls......Page 172
3.1.4 Polarized Reflex Detection......Page 173
3.1.5 Proximity (Diffuse-Reflection) Detection......Page 174
3.1.6 Automated Guided Vehicle System......Page 175
3.2 Fiber Optics......Page 176
3.2.2 Bifurcated Fiber Optics......Page 178
3.3.1 Excess Gain......Page 180
3.3.2 Background Suppression......Page 182
3.4 Inductive Proximity Sensors—Noncontact Metal Detection......Page 183
3.5 Limit Switches—Traditional Reliability......Page 185
3.6 Factors Affecting the Selection of Position Sensors......Page 186
3.8.2 Retroreflective Sensing Mode......Page 187
3.8.4 Divergent Sensing Mode......Page 188
3.8.6 Mechanical Convergence......Page 189
3.10 Principles of Fiber Optics in Communications......Page 190
3.12 Configurations of Fiber Optics......Page 192
3.12.1 Optical Power Budget......Page 193
3.12.2 Digital Links—Pulsed......Page 194
3.12.3 Digital Links—Carrier-Based......Page 195
3.12.5 Video Links......Page 196
3.12.6 Data Bus Networks......Page 197
3.13.1 Fiber-Optic Bundles......Page 200
3.13.2 Bundle Design Considerations......Page 202
3.13.3 Fiber Pairs for Remote Sensing......Page 203
3.13.4 Fiber-Optic Liquid Level Sensing......Page 204
3.14.1 Fiber-Optic Terminations......Page 205
3.16 Testing Light Sources......Page 207
3.16.1 Power Meters......Page 208
3.17 Dual Laser Test Sets......Page 210
3.17.1 Test Sets/Talk Sets......Page 211
3.17.3 Fault Finders......Page 212
3.17.4 Fiber Identifiers......Page 213
3.18 Networking with Electrooptic Links......Page 214
3.18.1 Hybrid Wire/Fiber Networks......Page 215
3.18.3 Active Star Networks......Page 216
3.18.4 Hybrid Fiber Networks......Page 217
3.19 Versatility of Fiber Optics in Industrial Applications......Page 219
3.19.1 High-Clad Fiber-Optic Cables......Page 220
Further Reading......Page 224
4.1 Introduction......Page 226
4.2 The Number of Products in a Flexible System......Page 228
4.6 Sensors Tracking the Mean Processing Time......Page 229
4.7.1 Diagnostic Systems......Page 231
4.7.3 Sensing Motor Current for Signature Analysis......Page 232
4.7.6 Sensors for Diagnostic Systems......Page 233
4.7.8 Evaluation of an Existing Flexible Manufacturing Cell Using a Sensing Network......Page 234
4.8 Understanding Computer Communications and Sensors' Role......Page 242
4.8.2 Presentation Layer Communication......Page 244
4.8.7 Physical Layer Communication......Page 245
4.8.8 Adding and Removing Information in Computer Networks Based on Open System Interconnect (OSI)......Page 246
4.9.1 RS-232-Based Networks......Page 248
4.9.2 Ethernet......Page 250
4.10 Manufacturing Automation Protocol......Page 251
4.10.1 Broadband System for MAP Protocol......Page 252
4.10.3 Bridges MAP Protocol......Page 254
4.10.4 Token Systems for MAP Protocol......Page 255
4.11 Multiple-Ring Digital Communication Network—AbNET......Page 256
4.12 The Universal Memory Network......Page 258
4.13 Satellite Sensor Network......Page 260
Further Reading......Page 261
5.1 Introduction......Page 264
5.2 The CIM Plan......Page 265
5.2.5 The CIM Plan for Business Management......Page 266
5.3 The Manufacturing Enterprise Model......Page 267
5.3.1 Marketing......Page 269
5.3.2 Engineering and Research......Page 270
5.3.3 Production Planning......Page 273
5.3.4 Plant Operations......Page 274
5.3.5 Physical Distribution......Page 277
5.3.6 Business Management......Page 279
5.4 Design of CIM with Sensors and Control Systems......Page 281
5.4.1 Components of CIM with Sensors and Control Systems......Page 282
5.4.2 CIM with Sensors and Control Systems at the Plant Level......Page 283
5.5.1 Computer-Integrated Manufacturing Database (CIM DB)......Page 287
5.5.2 Structure of Multiobjective Support Decision Systems......Page 288
5.6 Analysis and Design of CIM with Sensors and Control Systems......Page 289
5.6.1 Structured Analysis and Design Technique (SADT)......Page 290
5.6.2 A Multiobjective Approach for Selection of Sensors in Manufacturing......Page 291
5.7.2 Sensors and Actuators......Page 292
5.7.4 Data Acquisition for Sensors and Control Hardware......Page 294
5.7.6 Communication Interfaces......Page 296
5.8 Developing CIM Strategy with Emphasis on Sensors' Role in Manufacturing......Page 297
5.8.1 CIM and Building Blocks......Page 298
5.8.3 Plant Floor Communications......Page 299
5.8.4 Managing Data in the CIM Environment......Page 301
5.8.5 CIM Environment Presentation......Page 302
5.8.6 The Requirement for Integration......Page 304
Further Reading......Page 308
6.1.1 Bar-Code Identification Systems......Page 310
6.1.3 Electromagnetic Identification of Manufactured Components......Page 312
6.2 Digital Encoder Sensors......Page 313
6.2.1 Position Encoder Sensors in Manufacturing......Page 315
6.3.1 Sensing Principles......Page 317
6.3.2 Color Theory......Page 318
6.3.3 Units of Color Measurement......Page 320
6.3.4 Color Comparators and True Color Measuring Instruments......Page 321
6.3.5 Color Sensor Algorithms......Page 322
6.4.1 Available Light Sensing Options......Page 323
6.5 Photodiodes......Page 324
6.6 Phototransistors and Photodarlingtons......Page 326
6.7 Photoconductive Sensors......Page 327
6.8 Sensor Electronic Assemblies......Page 328
6.11 Infrared Light Domain......Page 329
6.16 Design Considerations in Fuzzy Logic Color Sensors......Page 330
6.16.1 Fuzzy Logic Controller Flowcharts......Page 331
6.17 Sensors Detecting Faults in Dynamic Machine Parts (Bearings)......Page 333
6.18 Sensors for Vibration Measurement of a Structure......Page 335
6.19 Optoelectronic Sensor Tracking Targets on a Structure......Page 337
6.20 Optoelectronic Feedback Signals for Servomotors through Fiber Optics......Page 338
6.21 Acoustooptical/Electronic Sensors for Synthetic-Aperture Radar Utilizing Vision Technology......Page 340
6.22 The Use of Optoelectronic/Vision Associative Memory for High-Precision Image Display and Measurement......Page 342
6.23 Sensors for Hand-Eye Coordination of Microrobotic Motion Utilizing Vision Technology......Page 344
6.24 Force and Optical Sensors Controlling Robotic Grippers for Agriculture and Manufacturing Applications......Page 345
6.25 Ultrasonic Stress Sensor Measuring Dynamic Changes in Materials......Page 347
6.26 Predictive Monitoring Sensors Serving the CIM Strategy......Page 349
6.27 Reflective Strip Imaging Camera Sensor—Measuring a 180°-Wide Angle......Page 350
6.28 Optical Sensor Quantifying Acidity of Solutions......Page 352
6.29.1 Sensor for Detecting Minute Quantities of Biological Materials......Page 354
6.29.2 Sensors for Early Detection and Treatment of Lung Tumors......Page 355
6.29.3 Ultrasensitive Sensors for Single-Molecule Detection......Page 356
Further Reading......Page 358
7.1 Introduction......Page 360
7.2 Sensors in Manufacturing......Page 363
7.3 Temperature Sensors in Process Control......Page 364
7.3.1 Semiconductor Absorption Sensors......Page 365
7.3.2 Semiconductor Temperature Detector Using Photoluminescence......Page 366
7.3.4 Noncontact Sensors—Pyrometers......Page 369
7.4.1 Piezoelectric Crystals......Page 372
7.5 Fiber-Optic Pressure Sensors......Page 373
7.6.1 Nano-Capacitive Positioning Sensors......Page 375
7.9 Materials Achieving Greater Accuracy......Page 378
7.10 Mounting, Calibration, and Measuring Ranges......Page 379
7.12 Electronics Support......Page 380
7.15 Displacement Sensors for Robotic Applications......Page 383
7.16 Process Control Sensors Measuring and Monitoring Liquid Flow......Page 385
7.16.1 Flow Sensors Detecting Small Air Bubbles for Process Control in Manufacturing......Page 386
7.16.2 Liquid Level Sensors in Manufacturing Process Control for Petroleum and Chemical Plants......Page 388
7.17 Sensory MEMS Enable Certain Molecules to Signal Breast Cancer's Spread......Page 390
7.18 On-Line Measuring and Monitoring of Gas by Spectroscopy......Page 391
7.19 Using Avalanche Photodiodes to Improve System Performance......Page 394
7.20 Structures of Avalanche Photodiodes—APD Structures......Page 395
7.21 Critical Performance Parameters......Page 397
7.22 Selecting an APD......Page 398
7.22.2 Understanding the Specifications Responsivity and Gain......Page 399
7.23.1 Excess Noise Factor......Page 400
7.25 Crack Detection Sensors for Commercial, Military, and Space Industry Use......Page 402
7.26 Control of the Input/Output Speed of Continuous Web Fabrication Using Laser Doppler Velocity Sensor......Page 404
7.27 Ultrasonic/Laser Nondestructive Evaluation Sensor......Page 405
7.28 Process Control Sensors for Acceleration......Page 406
7.29 An Endoscope as Image Transmission Sensor......Page 407
7.30 Sensor Network Architectures in Manufacturing......Page 408
7.31 Power Line Fault-Detection Systems for Power Generation and Distribution Industries......Page 410
Further Reading......Page 411
8.1 Introduction......Page 414
8.2 The Role of Sensors in FMS......Page 415
8.2.1 Current Available Sensor Technology for FMS......Page 416
8.3.1 Image Transformation......Page 418
8.3.3 Robot Vision and Visual Tasks......Page 419
8.3.5 Robots Utilizing Vision Systems to Recognize Objects......Page 421
8.4 Robot Vision Locating Position......Page 423
8.5.1 Robot Vision Performing Inspection Tasks......Page 424
8.5.2 Components of Robot Vision......Page 425
8.6 End Effector Camera Sensor for Edge Detection and Extraction......Page 426
8.6.2 Position and Orientation......Page 427
8.6.3 Multiple Objects......Page 428
8.7 End Effector Camera Sensor Detecting Partially Visible Objects......Page 430
8.9 End Effector Sound-Vision Recognition Sensors......Page 435
8.9.2 Large Surface Measurements......Page 437
8.9.4 Small Surfaces......Page 439
8.9.5 Positioning......Page 440
8.10 End Effector Linear Variable-Displacement Transformer Sensor......Page 442
8.10.1 Extreme Environments......Page 444
8.10.2 Cryogenic Manufacturing Applications......Page 445
8.11 Robot Control through Sensors......Page 446
8.12 Multisensor-Controlled Robot Assembly......Page 447
8.12.1 Control Computer......Page 450
8.12.3 Software Structure......Page 451
8.13 History of Industrial Robotics......Page 452
8.13.2 Modern Developments......Page 453
8.14 The Invention of Industrial Robots......Page 454
8.14.1 Technical Description......Page 456
8.14.2 Robot Programming and Interfaces......Page 458
8.14.3 End Effectors......Page 459
8.14.4 Movement and Singularities......Page 460
8.15 Robot Programming......Page 461
8.16 The 2006 World Robot Market—Total Worldwide Sales......Page 463
8.17 Measurements of Robot Density Based on the Total Number of Persons Employed......Page 469
8.17.4 Distribution of Service Robots for Personal and Private Use......Page 470
8.18 Projections for the Period 2007–2010......Page 471
Further Reading......Page 472
9.2 Single-Board Computer......Page 474
9.3 Sensors for Input Control......Page 475
9.4 Microcomputer Interactive Development System......Page 479
9.5 The Personal Computer as a Single-Board Computer......Page 480
9.5.1 Role of Sensors in Programmable Logic Controllers—PLC......Page 481
9.5.2 Central Control Units......Page 483
9.6 The NC Controller......Page 485
9.6.1 Manufacturing Procedure and Control......Page 486
9.6.2 The Machining Program......Page 487
9.6.3 Absolute Control......Page 492
9.6.4 NC Software......Page 493
9.6.5 Operation of an NC System......Page 497
9.6.6 Computer Numerical Control System......Page 501
9.7 Industrial Handling......Page 504
9.8 Packaging Technology......Page 508
9.9 Linear Indexing for Manufacturing Applications......Page 510
9.10 Synchronous Indexing for Manufacturing Applications......Page 512
9.11 Parallel Data Transmission......Page 513
9.12 Serial Data Transmission......Page 515
9.13 The Collection and Generation of Process Signals in Decentralized Manufacturing Systems......Page 518
Further Reading......Page 521
10.2 Abbreviations—Nomenclature......Page 522
10.3 Glossary......Page 525
10.4 Formula and Mathematical Relations......Page 526
10.5 The SpectRx FFT-NIR Technology Advantage......Page 527
10.5.1 Software Philosophy......Page 528
10.5.2 Data Flow Outlines......Page 529
10.7.1 Object View Spectral Radiation......Page 530
10.7.4 Power at the Detector......Page 532
10.7.7 Photon Noise......Page 533
10.7.8 Johnson Noise (InSb Detectors)......Page 534
10.7.10 Dark Noise......Page 538
10.7.13 Instrument Efficiency......Page 539
10.7.14 NESR......Page 540
10.8 Instrument Line Shape and Spectral Resolution......Page 541
10.8.1 Spectral Resolution......Page 542
10.8.2 Apodization......Page 543
10.9 Radiometric Calibration......Page 544
10.9.1 Calibration Theory......Page 545
10.9.3 Linear Multiple Point Calibrations......Page 547
10.9.4 Nonlinear Multiple Point Calibrations......Page 548
10.10.1 Calibration Source Errors......Page 550
10.10.2 Calibration Drift......Page 552
10.10.3 Intrinsic Linearity......Page 554
10.10.5 Channel Spectrum Error......Page 555
Further Reading......Page 557
11.1 Manufacturing Operation Control Through Financial Planning......Page 558
11.1.3 Product Budget......Page 559
11.1.4 Selling and Administrative Budget......Page 560
11.1.7 Income Statement and Balance Sheet Projections......Page 561
11.1.9 Controlling Operation......Page 562
11.1.10 Cost and Profit Analysis......Page 563
11.2.2 Breakeven Chart and Formula......Page 564
11.2.3 Utilization of Breakeven Analysis......Page 566
11.2.5 The Large New Production Order......Page 567
11.2.6 Make versus Buy......Page 568
11.2.7 The Importance of the Basic Data......Page 569
11.3 Communication......Page 570
11.3.1 The Need for Timeliness......Page 571
11.3.2 The Reporting Strategy......Page 572
11.3.4 Controllable and Uncontrollable Costs......Page 573
11.3.6 Analyzing Cost and Profit Data......Page 575
11.3.7 Communication of Business Financial Status......Page 576
11.4.2 Objective Probability......Page 577
11.4.3 Subjective Probability......Page 578
11.4.8 The Present Value......Page 579
11.4.9 Inventory Analysis......Page 582
11.4.10 Linear Programming......Page 583
11.4.12 The Constraints......Page 584
11.4.13 Project Management......Page 586
11.4.14 Simulation......Page 590
11.5 Where Do Sensors and Control Systems Take Us?......Page 591
Further Reading......Page 598
A......Page 600
B......Page 601
C......Page 602
D......Page 604
E......Page 605
F......Page 606
I......Page 608
L......Page 610
M......Page 611
N......Page 613
P......Page 614
R......Page 616
S......Page 618
U......Page 620
Z......Page 621