Written by today’s best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics. You learn how to grow, characterize and design optoelectronic devices using semiconductor nanostrucutres, and how to incorporate semiconductor nanostructures materials into conventional quantum well devices. Moreover, the book reviews optical, electronic, and structural characterization techniques to help you determine the properties of nanostructures and explore novel nanostructured materials.
This unique reference describes revolutionary devices that have been enabled by the growth of quantum dots, including quantum dot lasers and quantum dot detectors. You find detailed discussions on some of the more promising semiconductor material systems that have demonstrated nanostructuring, such as III-Nitrides, antimony-based, Silicon germanium, and Zinc Oxide. The book also provides a solid understanding of ordered carbon nanotubes and related structures, along with explanations of their novel uses as infrared detectors and solar cells.
Author(s): Victor I. Klimov
Series: Artech House Semiconductor Materials and Devices Library
Publisher: Artech House Publishers
Year: 2004
Language: English
Pages: 435
Semiconductor Nanostructures for Optoelectronic Applications......Page 2
Cover......Page 1
Contents......Page 6
1.2 Growth......Page 12
1.4 Materials for Semiconductor Nanostructures......Page 13
1.5 Summary......Page 14
2.1 Introduction......Page 16
2.2 Review of Thermodynamics......Page 17
2.3 Bulk Crystal Growth Techniques......Page 19
2.4 Epitaxial Growth Techniques......Page 27
2.5 Thin-Film Deposition Techniques......Page 40
2.6 Growth of Nanostructures......Page 45
3.1 Introduction......Page 56
3.2 QD and QDIP Structure Growth and Characterization......Page 60
3.3 QDIP Device Characteristics......Page 87
3.4 Prognosis......Page 118
4.1 Introduction: Dimensionality and Laser Performance......Page 124
4.3 Progress in Fabricating QD Lasers......Page 126
4.4 State-of-the-Art Complications......Page 127
4.5 Novel Designs of QD Lasers with Improved Threshold and Power Characteristics......Page 159
4.6 Other Perspectives......Page 162
5.1 Introduction......Page 170
5.2 MBE Growth of Self-Organized QDs and Their Electronic Properties......Page 171
5.3 Separate Confinement Heterostructure QD Lasers and Their Limitations......Page 174
5.4 Tunnel Injection of Carriers in QDs......Page 179
5.5 Characteristics of High-Speed Tunneling-Injection QD Lasers......Page 183
5.6 Conclusion......Page 194
6.1 Introduction......Page 198
6.2 Growth Techniques......Page 202
6.3 Characterizations......Page 222
6.4 Device Applications......Page 230
7.1 Introduction......Page 240
7.2 III-Sb Binary Compounds: GaSb, AISb, and InSb......Page 246
7.3 InAsSb......Page 261
7.4 InTISb......Page 270
7.5 InBiSb......Page 273
7.6 InTIAsSb......Page 277
7.7 InAsSb/InAsSbP for IR lasers......Page 278
7.8 GaSb/InAs Type II Superlattice for IR Photodetectors......Page 284
8.1 Introduction......Page 300
8.2 Growth of III-Nitride QDs......Page 302
8.3 Optical Properties of III-Nitride QDs......Page 328
8.4 Summary......Page 354
9.2 Heteropitaxy Mechanisms......Page 360
9.3 Uniform Ge Islands......Page 361
9.4 Registration and Regimrntation of Ge Islands......Page 366
9.5 Novel Device Applications......Page 373
9.6 Conclusion......Page 378
10.1 Introduction......Page 382
10.2 Controlled Fabrication of Uniform Nanotubes in a Highly Ordered Array......Page 384
10.3 Interfacing with Biomolecules and Cells......Page 390
10.4 Intrinsic Quantum Electromechanical Couplings......Page 393
10.5 Extrinsic Coupling to Radiation Fields......Page 402
10.6 Heterojunction Nanotubes......Page 403
10.7 Prospects for Future Advances......Page 407
Acronyms......Page 414
About the Editor......Page 418
Index......Page 420