This timely publication presents a review of the most recent developments in the field of Semiconductor Disk Lasers. Covering a wide range of key topics, such as operating principles, thermal management, nonlinear frequency conversion, semiconductor materials, short pulse generation, electrical pumping, and laser applications, the book provides readers with a comprehensive account of the fundamentals and latest advances in this rich and diverse field. In so doing, it brings together contributions from world experts at major collaborative research centers in Europe and the USA. Each chapter includes a tutorial style introduction to the selected topic suitable for postgraduate students and scientists with a basic background in optics - making it of interest to a wide range of scientists, researchers, engineers and physicists working and interested in this rapidly developing field. It will also serve as additional reading for students in the field.
Author(s): Oleg G. Okhotnikov
Edition: 1
Publisher: Wiley-VCH
Year: 2010
Language: English
Pages: 330
Semiconductor Disk Lasers: Physics and Technology......Page 5
Contents......Page 7
Preface......Page 13
List of Contributors......Page 15
1.1 Introduction......Page 19
1.2.1 History of VECSELs: Semiconductor Lasers, Optical Pumping, and External Cavity......Page 20
1.2.2 Basic Principles of Operation: VECSEL Structure and Function......Page 24
1.2.3.1 Power Scaling......Page 27
1.2.3.2 Beam Quality......Page 28
1.2.3.3 Laser Functional Versatility Through Intracavity Optical Elements......Page 29
1.2.4.1 Wavelength Versatility Through Semiconductor Materials and Structures......Page 30
1.2.4.2 Wavelength Versatility Through Nonlinear Optical Conversion......Page 32
1.3.1.1 Semiconductor Gain Design for VECSELs......Page 34
1.3.1.2 On-Chip Multilayer Laser Bragg Mirror......Page 39
1.3.1.3 Semiconductor Wafer Structure......Page 40
1.3.2 Optical Cavity: Geometry, Mode Control, and Intracavity Elements......Page 42
1.3.3 Optical and Electrical Pumping......Page 47
1.3.4 VECSEL Laser Characterization......Page 51
1.4.1 Demonstrated Power Scaling and Wavelength Coverage......Page 56
1.4.2 Commercial Applications......Page 63
1.4.3 Current and Future Research Directions......Page 66
1.4.4 Future of VECSEL Lasers: Scalable Power with Beam Quality from UV to IR......Page 72
References......Page 75
2.1 Introduction......Page 91
2.2.1 Material System Selection......Page 92
2.2.2 Gain......Page 94
2.2.3 Mirrors......Page 97
2.2.4 Subcavity Designs......Page 98
2.2.5 Growth......Page 99
2.2.6 Structure Characterization......Page 100
2.2.7 Laser Cavity......Page 101
2.3.1 Introduction: Why Is Thermal Management Important?......Page 102
2.3.2 Thermal Management Strategies in VECSELs......Page 103
2.3.4 The Thin Device and Heat Spreader Approaches at 1 and 2 μm......Page 105
2.3.5 Important Parameters: The Thermal Conductivity of the Mirror Structure, Submount, and Heat Spreader......Page 107
2.3.6 Power Scaling of VECSELs......Page 109
2.3.7 Wavelength Versatility......Page 112
2.4.1 Power......Page 114
2.4.2 Efficiency......Page 118
2.4.3 Tuning......Page 121
2.5.1 Microchip......Page 123
2.5.2 Pump Integration......Page 125
2.5.3 Fiber-Tunable VECSELs......Page 127
References......Page 129
3.1 Introduction......Page 137
3.2.1 General Principle of Frequency Doubling......Page 139
3.2.2 Power Scaling of SDLs......Page 142
3.3 SDL Frequency Doubled to Red......Page 144
3.3.1 Dilute Nitride Heterostructures for 1.2 μm Light Emission......Page 145
3.3.2 Plasma-Assisted MBE Growth of Dilute Nitrides......Page 146
3.3.3 Design and Characteristics of Dilute Nitride Gain Media......Page 148
3.3.4 Performance of 1220nm SDL......Page 151
3.3.5 SDL Intracavity Light Conversion to Red–Orange......Page 154
References......Page 157
4.1 Introduction......Page 161
4.2 The III-Sb Material System......Page 162
4.3 Epitaxial Layer Design and Growth of III-Sb Disk Laser Structures......Page 164
4.3.1 Basic Structural Layout......Page 165
4.3.2 Sample Growth and Post-Growth Analysis......Page 167
4.3.3 Epitaxial Design of In-Well-Pumped SDLs......Page 171
4.3.4 Sb-Based Active Regions on GaAs/AlGaAs DBRs......Page 173
4.4.1 Initial Experiments......Page 175
4.4.2 Sb-Based SDLs Using Intracavity Heat Spreaders......Page 176
4.4.3 In-Well-Pumped Sb-Based Semiconductor Disk Lasers......Page 181
4.4.4 Sb-Based Semiconductor Disk Lasers on GaAs Substrates......Page 184
4.5 Tunable, Single-Frequency Lasers......Page 185
4.5.1 Tunability......Page 186
4.5.2 Single-Frequency Operation......Page 190
4.5.3 Experimental Results of a 2.3 μm Single-Frequency SDL......Page 194
4.7 Conclusions......Page 197
References......Page 199
5.2 Size Quantization in Optical Gain Media......Page 205
5.2.1 Quantum Dots in Lasers......Page 207
5.2.3 Energies of Confined Charge Carriers......Page 209
5.2.4.1 Edge-Emitting Quantum Dot Lasers......Page 214
5.2.4.2 Surface-Emitting Quantum Dot Lasers......Page 216
5.3.1 Concepts of Gain Structures......Page 218
5.3.2 Adjustment of Quantum Dot Emission Wavelength......Page 220
5.3.2.1 Tuning of Stranski–Krastanow Quantum Dots......Page 221
5.3.2.2 Tuning of Submonolayer Quantum Dots......Page 222
5.3.3.1 Disk Lasers with Stranski–Krastanow Quantum Dots......Page 223
5.4 Conclusions......Page 225
References......Page 226
6.1.1 Ultrafast Lasers......Page 231
6.1.2 Ultrafast Semiconductor Lasers......Page 233
6.1.3 Application Areas......Page 234
6.2 SESAM Mode Locking of Semiconductor Disk Lasers......Page 237
6.2.1.1 Nonlinear Optical Reflectivity......Page 238
6.2.1.2 Temporal SESAM Response......Page 243
6.2.2 Pulse Formation......Page 245
6.2.2.1 Model for the Pulse Shaping......Page 247
6.2.2.2 Mode-Locking Stability and the Importance of Gain and SESAM Saturation......Page 249
6.2.2.3 Importance of Group Delay Dispersion......Page 250
6.2.3.1 SESAM Structure for Field Enhancement Control......Page 251
6.2.3.2 Comparison of Quantum Well and Quantum Dot SESAMs......Page 254
6.3.1 Introduction......Page 257
6.3.2.1 Power Scaling of Mode-Locked VECSELs......Page 258
6.3.2.2 Experimental Results......Page 260
6.3.2.3 Outlook......Page 261
6.3.3 VECSEL Mode Locking at High Repetition Rates......Page 262
6.3.3.2 Mode-Locked VECSELs with up to 50 GHz......Page 263
6.3.4.1 Introduction......Page 264
6.3.5 Electrically Pumped Mode-Locked VECSELs......Page 265
6.4.1 Introduction......Page 266
6.4.2 Integration Challenges......Page 267
6.4.3 Results......Page 269
6.4.4 Outlook......Page 270
6.5 Summary and Outlook......Page 272
References......Page 274
7.1 Introduction......Page 281
7.2 Device Design and Performance......Page 282
7.3 Mode Control, Cavity Design, and Thermal Lensing......Page 288
7.4 High-Power Arrays and Multielement Devices......Page 292
7.4.1 Design of the Chip......Page 294
7.5 Carrier Dynamics......Page 304
7.6.1 Visible Laser Sources: Applications and Requirements......Page 305
7.6.2 Cavity Design Optimization and Trade-Offs for Second Harmonic Generation with Surface-Emitting Diode Lasers......Page 307
7.6.3 Nonlinear Crystals Used in Intracavity Frequency Conversion......Page 309
7.6.4 Low-Noise, High Mode Quality, Continuous-Wave Visible Laser Sources for Instrumentation Applications......Page 312
7.6.5 Compact Visible Sources Scalable to Array Architecture......Page 315
References......Page 319
Index......Page 323