Semiconducting silicon nanowires for biomedical applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material.

The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffolds, mediated differentiation of stem cells, and silicon nanoneedles for drug delivery. Finally, it highlights the use of silicon nanowires for detection and sensing. These chapters explore the fabrication and use of semiconducting silicon nanowire arrays for high-throughput screening in the biosciences, neural cell pinning on surfaces, and probe-free platforms for biosensing.

Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and tissue engineering, and researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive biomaterials.

  • Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires
  • Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffolds, mediated differentiation of stem cells, and silicon nanoneedles for drug delivery
  • Highlights the use of silicon nanowires for detection and sensing

Author(s): Jeffery L. Coffer
Series: Woodhead Publishing Series in Biomaterials 73
Publisher: Woodhead Publishing
Year: 2014

Language: English
Pages: 288
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанобиотехнология;