Author(s): H. Seifert, W. Threlfall (authors), Michael A. Goldman, Wolfgang Heil (translators), Joan S. Birman, Julian Elsner (editors)
Series: Pure and Applied Mathematics Volume 89
Publisher: Academic Press
Year: 1980
Language: English
Pages: 453
Seifert and Threlfall: A Textbook of Topology and Seifert: Topology of 3-Dimensional Fibered Spaces......Page p0004.djvu
Copyright Page......Page p0005.djvu
CONTENTS......Page p0006.djvu
Preface to English Edition......Page p0010.djvu
Acknowledgments......Page p0014.djvu
Preface to German Edition......Page p0016.djvu
PART I: SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY......Page p0018.djvu
1. The Principal Problem of Topology......Page p0020.djvu
2. Closed Surfaces......Page p0024.djvu
3. Isotopy, Homotopy, Homology......Page p0033.djvu
4. Higher Dimensional Manifolds......Page p0035.djvu
5. Neighborhood Spaces......Page p0041.djvu
6. Mappings......Page p0044.djvu
7. Point Sets in Euclidean Spaces......Page p0049.djvu
8. Identification Spaces......Page p0052.djvu
9. n-Simplexes......Page p0056.djvu
10. Simplicial Complexes......Page p0062.djvu
11. The Schema of a Simplicial Complex......Page p0064.djvu
12. Finite, Pure, Homogeneous Complexes......Page p0067.djvu
13. Normal Subdivision......Page p0069.djvu
14. Examples of Complexes......Page p0071.djvu
15. Chains......Page p0079.djvu
16. Boundary, Closed Chains......Page p0080.djvu
17. Homologous Chains......Page p0082.djvu
18. Homology Groups......Page p0085.djvu
19. Computation of the Homology Groups in Simple Cases......Page p0087.djvu
20. Homologies with Division......Page p0090.djvu
21. Computation of Homology Groups from the Incidence Matrices......Page p0092.djvu
22. Block Chains......Page p0099.djvu
23. Chains mod 2, Connectivity Numbers, Euler’s Formula......Page p0102.djvu
24. Pseudomanifolds and Orientability......Page p0109.djvu
25. Singular Simplexes......Page p0114.djvu
26. Singular Chains......Page p0116.djvu
27. Singular Homology Groups......Page p0117.djvu
28. The Approximation Theorem, Invariance of Simplicial Homology Groups......Page p0121.djvu
29. Prisms in Euclidean Spaces......Page p0122.djvu
30. Proof of the Approximation Theorem......Page p0126.djvu
3I. Deformation and Simplicial Approximation of Mappings......Page p0134.djvu
32. Homology Groups of a Complex at a Point......Page p0142.djvu
34. Invariance of the Purity of a Complex......Page p0148.djvu
35. Invariance of Boundary......Page p0150.djvu
36. Invariance of Pseudomanifolds and of Orientability......Page p0151.djvu
37. Closed Surfaces......Page p0153.djvu
38. Transformation to Normal Form......Page p0158.djvu
39. Types of Normal Form: The Principal Theorem......Page p0164.djvu
40. Surfaces with Boundary......Page p0165.djvu
41. Homology Groups of Surfaces......Page p0168.djvu
42. The Fundamental Group......Page p0173.djvu
43. Examples......Page p0180.djvu
44. The Edge Path Group of a Simplicial Complex......Page p0182.djvu
45. The Edge Path Group of a Surface Complex......Page p0186.djvu
46. Generators and Relations......Page p0190.djvu
47. Edge Complexes and Closed Surfaces......Page p0193.djvu
48. The Fundamental and Homology Groups......Page p0196.djvu
49. Free Deformation of Closed Paths......Page p0199.djvu
51. The Fundamental Group at a Point......Page p0201.djvu
52. The Fundamental Group of a Composite Complex......Page p0202.djvu
53. Unbranched Covering Complexes......Page p0207.djvu
54. Base Path and Covering Path......Page p0210.djvu
55. Coverings and Subgroups of the Fundamental Group......Page p0214.djvu
56. Universal Coverings......Page p0219.djvu
57. Regular Coverings......Page p0220.djvu
58. The Monodromy Group......Page p0224.djvu
59. General Principles......Page p0230.djvu
60. Representation by a Polyhedron......Page p0232.djvu
61. Homology Groups......Page p0237.djvu
62. The Fundamental Group......Page p0240.djvu
63. The Heegaard Diagram......Page p0245.djvu
64. 3-Dimensional Manifolds with Boundary......Page p0248.djvu
65. Construction of 3-Dimensional Manifolds out of Knots......Page p0250.djvu
66. Star Complexes......Page p0254.djvu
67. Cell Complexes......Page p0260.djvu
68. Manifolds......Page p0263.djvu
69. The Poincaré Duality Theorem......Page p0269.djvu
70. Intersection Numbers of Cell Chains......Page p0274.djvu
71. Dual Bases......Page p0277.djvu
72. Cellular Approximations......Page p0282.djvu
73. Intersection Numbers of Singular Chains......Page p0286.djvu
74. lnvariance of Intersection Numbers......Page p0288.djvu
75. Examples......Page p0298.djvu
76. Orientability and Two-Sidedness......Page p0302.djvu
77. Linking Numbers......Page p0307.djvu
79. A Trace Formula......Page p0313.djvu
80. A Fixed Point Formula......Page p0319.djvu
81. Applications......Page p0320.djvu
82. Generators and Relations......Page p0324.djvu
83. Homomorphic Mappings and Factor Groups......Page p0328.djvu
84. Abelianization of Groups......Page p0331.djvu
85. Free and Direct Products......Page p0332.djvu
86. Abelian Groups......Page p0335.djvu
87. The Normal Form of Integer Matrices......Page p0342.djvu
COMMENTS......Page p0347.djvu
BIBLIOGRAPHY......Page p0360.djvu
PART II: SEIFERT: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES......Page p0378.djvu
1. Fibered Spaces......Page p0381.djvu
2. Orbit Surface......Page p0385.djvu
3. Fiberings of S3......Page p0389.djvu
4. Triangulations of Fibered Spaces......Page p0391.djvu
5. Drilling and Filling (Surgery)......Page p0393.djvu
6. Classes of Fibered Spaces......Page p0399.djvu
7. The Orientable Fibered Spaces......Page p0404.djvu
8. The Nonorientable Fibered Spaces......Page p0410.djvu
9. Covering Spaces......Page p0416.djvu
10. Fundamental Groups of Fibered Spaces......Page p0419.djvu
11. Fiberings of the 3-Sphere (Complete List)......Page p0422.djvu
12. The Fibered Poincaré Spaces......Page p0423.djvu
13. Constructing Poincaré Spaces from Torus Knots......Page p0426.djvu
14. Translation Groups of Fibered Spaces......Page p0427.djvu
15. Spaces Which Cannot Be Fibered......Page p0434.djvu
Appendix. Branched Coverings......Page p0439.djvu
Index to "A Textbook of Topology"......Page p0444.djvu