About This Book
Learn how to handle a variety of tasks with Scikit-Learn with interesting recipes that show you how the library really works
Use Scikit-Learn to simplify the programming side data so you can focus on thinking
Discover how to apply algorithms in a variety of situations
Who This Book Is For
If you're a data scientist already familiar with Python but not Scikit-Learn, or are familiar with other programming languages like R and want to take the plunge with the gold standard of Python machine learning libraries, then this is the book for you.
In Detail
Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. Its consistent API and plethora of features help solve any machine learning problem it comes across.
The book starts by walking through different methods to prepare your data—be it a dataset with missing values or text columns that require the categories to be turned into indicator variables. After the data is ready, you'll learn different techniques aligned with different objectives—be it a dataset with known outcomes such as sales by state, or more complicated problems such as clustering similar customers. Finally, you'll learn how to polish your algorithm to ensure that it's both accurate and resilient to new datasets.
Author(s): Trent Hauck
Publisher: PacktPub
Year: 2014
Language: English
Pages: 214