Modified to conform to the current curriculum, Schaums Outline of Signals and Systems complements these courses in scope and sequence to help you understand its basic concepts. The book offers practice on topics such as transform techniques for the analysis of LTI systems, the LaPlace transform and its application to continuous-time and discrete-time LTI systems, Fourier analysis of signals and systems, and the state space or state variable concept and analysis for both discrete-time and continuous-time systems. Appropriate for the following courses: Basic Circuit Analysis, Electrical Circuits, Electrical Engineering and Circuit Analysis, Introduction to Circuit Analysis, AC and DC Circuits.
Features:
- 571 solved problems
- Additional material on matrix theory and complex numbers
- Support for all the major textbooks for electrical engineering courses kin electric circuits
Topics include: Signals and Systems, Linear Time-Invariant Systems, LaPlace Transform and Continuous-Time LTI Systems, The z-Transform and Discrete-Time LTI Systems, Fourier Analysis of Continuous-Time Signals and Systems, Fourier Analysis of Discrete-Time, State Space Analysis, Review of Matrix Theory, Properties of Linear Time-Invariant Systems and Various Transforms, Review of Complex Numbers, Useful Mathematical Formulas
Author(s): Hwei Hsu
Series: Schaum's Outline Series
Edition: 2
Publisher: McGraw-Hill
Year: 2010
Language: English
Pages: 480
Tags: Приборостроение;Обработка сигналов;
Cover Page......Page 1
Copyright......Page 3
Preface......Page 4
Contents......Page 7
1.2 Signals and Classification of Signals......Page 10
1.3 Basic Continuous-Time Signals......Page 15
1.4 Basic Discrete-Time Signals......Page 20
1.5 Systems and Classification of Systems......Page 23
Solved Problems......Page 26
2.2 Response of a Continuous-Time LTI System and the Convolution Integral......Page 60
2.3 Properties of Continuous-Time LTI Systems......Page 62
2.5 Systems Described by Differential Equations......Page 63
2.6 Response of a Discrete-Time LTI System and Convolution Sum......Page 65
2.7 Properties of Discrete-Time LTI Systems......Page 66
2.8 Eigenfunctions of Discrete-Time LTI Systems......Page 67
2.9 Systems Described by Difference Equations......Page 68
Solved Problems......Page 69
3.2 The Laplace Transform......Page 110
3.3 Laplace Transforms of Some Common Signals......Page 114
3.4 Properties of the Laplace Transform......Page 115
3.5 The Inverse Laplace Transform......Page 118
3.6 The System Function......Page 119
3.7 The Unilateral Laplace Transform......Page 122
Solved Problems......Page 125
4.2 The z-Transform......Page 157
4.3 z-Transforms of Some Common Sequences......Page 161
4.4 Properties of the z-Transform......Page 162
4.5 The Inverse z-Transform......Page 165
4.6 The System Function of Discrete-Time LTI Systems......Page 167
Solved Problems......Page 169
5.2 Fourier Series Representation of Periodic Signals......Page 202
5.3 The Fourier Transform......Page 205
5.4 Properties of the Continuous-Time Fourier Transform......Page 209
5.5 The Frequency Response of Continuous-Time LTI Systems......Page 212
5.6 Filtering......Page 215
5.7 Bandwidth......Page 218
Solved Problems......Page 219
6.2 Discrete Fourier Series......Page 270
6.3 The Fourier Transform......Page 272
6.4 Properties of the Fourier Transform......Page 276
6.5 The Frequency Response of Discrete-Time LTI Systems......Page 280
6.6 System Response to Sampled Continuous-Time Sinusoids......Page 282
6.7 Simulation......Page 283
6.8 The Discrete Fourier Transform......Page 284
Solved Problems......Page 287
7.2 The Concept of State......Page 338
7.3 State Space Representation of Discrete-Time LTI Systems......Page 339
7.4 State Space Representation of Continuous-Time LTI Systems......Page 341
7.5 Solutions of State Equations for Discrete-Time LTI Systems......Page 343
7.6 Solutions of State Equations for Continuous-Time LTI Systems......Page 346
Solved Problems......Page 349
8.2 Random Processes......Page 401
8.3 Statistics of Random Processes......Page 403
8.4 Gaussian Random Process......Page 409
Solved Problems......Page 410
9.2 Correlations and Power Spectral Densities......Page 426
9.3 White Noise......Page 428
9.4 Response of Linear System to Random Input......Page 430
Solved Problems......Page 433
A.1 Matrix Notation and Operations......Page 452
A.2 Transpose and Inverse......Page 455
A.3 Linear Independence and Rank......Page 456
A.4 Determinants......Page 457
A.5 Eigenvalues and Eigenvectors......Page 459
A.6 Diagonalization and Similarity Transformation......Page 460
A.7 Functions of a Matrix......Page 461
A.8 Differentiation and Integration of Matrices......Page 467
B.1 Probability......Page 468
B.2 Random Variables......Page 473
B.3 Two-Dimensional Random Variables......Page 477
B.4 Functions of Random Variables......Page 479
B.5 Statistical Averages......Page 482
C.2 The Laplace Transform......Page 487
C.3 The Fourier Transform......Page 489
C.4 Discrete-Time LTI Systems......Page 490
C.5 The 2-Transform......Page 491
C.6 The Discrete-Time Fourier Transform......Page 492
C.8 Fourier Series......Page 494
C.9 Discrete Fourier Series......Page 495
D.1 Representation of Complex Numbers......Page 496
D.4 Powers and Roots of Complex Numbers......Page 497
E.3 Trigonometric Identities......Page 498
E.6 Some Definite Integrals......Page 499
Index......Page 500