Author(s): Fred Safier
Series: Schaum’s Outline Series
Edition: 3
Publisher: McGraw-Hill
Year: 2013
Language: English
Pages: 409
Cover......Page 1
Title Page......Page 2
Copyright Page......Page 3
Contents......Page 6
Chapter 1 Preliminaries......Page 8
Chapter 2 Polynomials......Page 14
Chapter 3 Exponents......Page 22
Chapter 4 Rational and Radical Expressions......Page 27
Chapter 5 Linear and Nonlinear Equations......Page 36
Chapter 6 Linear and Nonlinear Inequalities......Page 48
Chapter 7 Absolute Value in Equations and Inequalities......Page 56
Chapter 8 Analytic Geometry......Page 61
Chapter 9 Functions......Page 75
Chapter 10 Linear Functions......Page 86
Chapter 11 Transformations and Graphs......Page 94
Chapter 12 Quadratic Functions......Page 102
Chapter 13 Algebra of Functions; Inverse Functions......Page 111
Chapter 14 Polynomial Functions......Page 121
Chapter 15 Rational Functions......Page 139
Chapter 16 Algebraic Functions; Variation......Page 153
Chapter 17 Exponential Functions......Page 161
Chapter 18 Logarithmic Functions......Page 169
Chapter 19 Exponential and Logarithmic Equations......Page 175
Chapter 20 Trigonometric Functions......Page 183
Chapter 21 Graphs of Trigonometric Functions......Page 194
Chapter 22 Angles......Page 204
Chapter 23 Trigonometric Identities and Equations......Page 218
Chapter 24 Sum, Difference, Multiple, and Half-Angle Formulas......Page 227
Chapter 25 Inverse Trigonometric Functions......Page 237
Chapter 26 Triangles......Page 247
Chapter 27 Vectors......Page 259
Chapter 28 Polar Coordinates; Parametric Equations......Page 268
Chapter 29 Trigonometric Form of Complex Numbers......Page 277
Chapter 30 Systems of Linear Equations......Page 286
Chapter 31 Gaussian and Gauss-Jordan Elimination......Page 294
Chapter 32 Partial Fraction Decomposition......Page 301
Chapter 33 Nonlinear Systems of Equations......Page 309
Chapter 34 Introduction to Matrix Algebra......Page 316
Chapter 35 Matrix Multiplication and Inverses......Page 320
Chapter 36 Determinants and Cramer’s Rule......Page 329
Chapter 37 Loci; Parabolas......Page 337
Chapter 38 Ellipses and Hyperbolas......Page 344
Chapter 39 Rotation of Axes......Page 356
Chapter 40 Conic Sections......Page 363
Chapter 41 Sequences and Series......Page 369
Chapter 42 The Principle of Mathematical Induction......Page 375
Chapter 43 Special Sequences and Series......Page 381
Chapter 44 Binomial Theorem......Page 388
Chapter 45 Limits, Continuity, Derivatives......Page 394
E......Page 406
M......Page 407
S......Page 408
Z......Page 409