Safety is one of the most important issues today. Recent international standards such as ISO and IEC have consistently advocated goal-based procedures of designing systems for better safety. The procedure assumes safety goals are explicitly established by international organizations, individual nations, particular industries or private companies. Satisfying Safety Goals by Modern Reliability Engineering is a methodological approach to the goal-based safety design procedure that will soon be an international requirement. Satisfying Safety Goals by Modern Reliability Engineering primarily focuses on the quantitative aspects of international standards. The methodologies presented are illustrated through the use of case studies. The book also: presents accident statistics and safety goals; describes abnormal event enumeration for the target system; develops risk reduction mechanisms; discusses probabilistic risk assessment (PRA) models typified by event trees coupled with fault trees; presents conventional materials for basic event quantification; describes how to calculate safety criteria from the PRA models, given basic event data; evaluates uncertainties of point estimates of safety criteria; and considers how external event quantification can expand the scope of PRA. Satisfying Safety Goals by Modern Reliability Engineering will be a good reference for senior undergraduates, postgraduates and researchers in the fields of reliability engineering and safety engineering and risk assessment. It will also be of interest to reliability engineers, practitioners in industry and regulatory authorities.
Author(s): Hiromitsu Kumamoto
Edition: 1st Edition.
Year: 2007
Language: English
Pages: 263
1846286816......Page 1
Contents......Page 10
1.1 Introduction......Page 16
1.2.1 Safety Goal Policy Statement (1986)......Page 17
1.2.4 Individual and Societal Risks......Page 18
1.2.5 QHOs and Fatality Statistics......Page 19
1.3.1 Accident and Public Confidence......Page 21
1.3.2 CDF and LERF Objectives......Page 23
1.3.4 Prevention and Mitigation......Page 24
1.4.1 Permanent Change......Page 25
1.4.2 Temporary Change......Page 27
1.5 Treatment of Uncertainties......Page 29
1.6.1 Deterministic Approach......Page 31
1.6.4 Decision Making Principles......Page 32
1.6.5 Defense-in-depth......Page 33
1.7.1 Radiation Fatality Risk......Page 37
1.7.2 TOR Requirements......Page 39
1.8.1 Individual and Societal Risk......Page 41
1.8.2 Graphical Representation of Societal Risk......Page 42
1.8.3 Example: Individual and Societal Risks......Page 44
1.9 Concluding Remarks......Page 47
2.2.1 Hazardous Situation and Event......Page 49
2.2.3 Functional Safety System......Page 50
2.2.4 Example: Reactor Scram System......Page 51
2.2.6 Safety Integrity Level......Page 52
2.2.7 Example: High-demand Mode......Page 54
2.2.8 Semiquantitative Method using Subsidiary Objective......Page 56
2.2.9 Layer of Protection Analysis......Page 60
2.2.10 Safety-layer Matrix......Page 63
2.2.11 Risk Graph......Page 65
2.3 SSC Categorization Guideline: NEI 00-04......Page 66
2.3.1 Safety-related SSCs......Page 67
2.3.2 Quality-assurance Program......Page 68
2.3.3 Safety-significance Categorization......Page 69
2.3.4 Internal Event Assessment Example......Page 72
2.4.1 Human-factors Engineering Review......Page 76
2.4.2 Step 1: Quantitative Assessment......Page 77
2.4.3 Step 2: Qualitative Assessment......Page 79
2.5 Concluding Remarks......Page 81
3.2 Uncertainty......Page 82
3.3 Guidelines, Standards, and Regulations......Page 83
3.4.1 Types of Dependencies......Page 84
3.4.2 Common-cause Failures......Page 86
3.4.3 Safety Principles for Dependency......Page 87
3.5 Safety Margins......Page 91
3.6 Human-factors Review for HSS Human Actions......Page 92
3.7.1 Detection Examples......Page 93
3.7.2 Diagnostic Coverage......Page 94
3.7.4 System Behavior on Detection of Failure......Page 95
3.7.5 Hardware Fault Tolerance by SFF and SIL......Page 96
3.8 Level of Defense-in-depth......Page 98
3.9.1 Evaluation of Changes of Special Treatment......Page 99
3.9.2 SIS Quantification......Page 100
3.10 Concluding Remarks......Page 107
4.2 Hazard, Source and Risk......Page 108
4.2.2 Typical Measures for Hazards......Page 109
4.3.1 HAZOP......Page 110
4.3.2 Abnormal-event Vocabularies......Page 111
4.3.3 Function Names......Page 113
4.4 FMEA......Page 114
4.6.1 Definition of Initiating Events......Page 116
4.6.5 Initiating-event Prevention......Page 118
4.6.6 Initiating-event Mitigation......Page 121
4.6.7 Accident Mitigation......Page 123
4.7 Concluding Remarks......Page 124
5.2.1 Initiating Event and Risk Profiles......Page 125
5.2.2 PRA without Material Hazards......Page 126
5.2.3 PRA with Material Hazards......Page 128
5.2.4 Nuclear Power Plant PRA: WASH-1400......Page 129
5.2.5 NUREG-1150 and ASME PRA Quality Standard......Page 133
5.3 Three PRA Levels......Page 134
5.4.1 Accident-frequency Analysis......Page 135
5.4.3 Plant Familiarization......Page 136
5.4.4 Initiating-event Analysis......Page 137
5.4.5 Event-tree Construction......Page 138
5.4.7 Accident-sequence Screening and Quantification......Page 142
5.4.9 Human-reliability Analysis......Page 143
5.4.11 Grouping of Accident Sequence......Page 144
5.5.1 Accident-progression Analysis......Page 145
5.7.1 Level 3 PRA Risk Profile......Page 146
5.7.2 Level 2 PRA Risk Profile......Page 149
5.8 Evaluation of Seismic Hazards......Page 150
5.8.1 Seismic Hazard Curve......Page 151
5.8.2 Calculation of Damage Probability......Page 154
5.10 Concluding Remarks......Page 155
6.2 What are Basic Events?......Page 156
6.3 Basic Two-state Transition Diagram......Page 157
6.3.1 Repair-to-failure Process Parameters......Page 158
6.3.2 Failure-to-repair Process Parameters......Page 162
6.3.3 Combined Process Parameters......Page 164
6.4.1 Process up to Failure Occurrence......Page 166
6.4.3 Combined Process......Page 167
6.5.1 Process up to Failure Occurrence......Page 169
6.5.2 Process up to Repair Completion......Page 170
6.5.3 Combined Process......Page 171
6.5.5 Fractional Time Availability......Page 173
6.6.1 Exponential Distribution and Random Failure......Page 174
6.6.2 Weibull Distribution and Early Failure......Page 175
6.6.3 Weibull Distribution and Wearout Failure......Page 177
6.7 Lognormal Distribution......Page 179
6.8 Stress and Response Model......Page 181
6.8.1 Case of Normal Distribution......Page 183
6.8.2 Case of Lognormal Distribution......Page 184
6.9.2 Data for Parameter Quantification......Page 185
6.9.4 Bayesian Approach......Page 187
6.9.5 Demand Failure and Standby Failure......Page 188
6.10 Concluding Remarks......Page 189
7.2.1 Reliability Block Diagram......Page 190
7.2.2 Series System......Page 191
7.2.4 Voting System......Page 192
7.2.5 Nonseries-parallel System......Page 194
7.4.1 Minimal Cut Sets......Page 195
7.4.2 Minimal Path Sets......Page 196
7.4.3 Minimal-cut Generation......Page 197
7.5 Fault-tree Linking along Event Tree......Page 199
7.6.2 Simple Systems......Page 200
7.6.3 Calculation of Unavailability......Page 201
7.6.4 Minimal-cut and Minimal-path Representations......Page 202
7.6.5 Inclusion-exclusion Formula......Page 206
7.7.1 Alarm-generating Function......Page 208
7.7.2 False-alarm Function......Page 209
7.7.4 False-alarm and Inactive-alarm Probabilities......Page 210
7.8 Concluding Remarks......Page 212
8.2 Common-cause Failures......Page 213
8.2.1 Cause-level Analysis......Page 214
8.2.2 Alpha-factor Model......Page 216
8.2.3 Distribution of Alpha-factor Parameters......Page 222
8.2.4 Alpha Factor with Staggered Testing......Page 224
8.2.5 Beta-factor Model......Page 225
8.3.1 Steer-by-wire System Reliability......Page 227
8.3.3 Operation Procedure during Partial Failures......Page 228
8.3.4 Markov Transition Diagram......Page 230
8.3.6 Reliability Quantification......Page 232
8.3.7 Design Alternative for Collision Safety......Page 233
8.4 Concluding Remarks......Page 234
9.1 Introduction......Page 235
9.2.1 Preinitiator Error......Page 236
9.3 Slip, Lapse, Mistake, and No Detection......Page 237
9.4 Stress and Performance-shaping Factors......Page 239
9.5.1 Median Response Time......Page 244
9.5.3 Available Time and Nonresponse Probability......Page 245
9.6 THERP......Page 247
9.6.1 Task Analysis......Page 248
9.6.2 HRA Event Tree......Page 249
9.6.3 Stress and Skill Level......Page 251
9.6.4 General THERP Procedure......Page 252
9.7 Concluding Remarks......Page 254
References......Page 255
D......Page 259
H......Page 260
P......Page 261
S......Page 262
W......Page 263