Satellite-to-Ground Radiowave Propagation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is a follow up to the award winning first edition and is written as a comprehensive guide for those who need to obtain a working knowledge of radiowave propagation on satellite-to-ground links at frequencies above 1 GHz, and as a reference book for experts in the field. To accomplish this, expanded sections of explanatory text, copiously illustrated, enable an undergraduate or non-specialist to grasp the fundamentals involved. An extensive reference list permits the expert to go to the source material should the level of inquiry go beyond the level of this book. This is an ideal reference for all levels of inquiry into satellite-to-ground radiowave propagation at frequencies above 1 GHz. Review questions are included in all chapters so that the book can act as a textbook for university study.

Author(s): J.E. Allnutt
Series: IET Electromagnetic Waves Series 54
Edition: 2nd
Publisher: The Institution of Engineering And Technology
Year: 2011

Language: English
Pages: xvi+680
Tags: Приборостроение;Электромагнитные поля и волны;

Satellite-to-Ground Radiowave Propagation, 2nd Edition......Page 4
Contents......Page 6
Preface......Page 14
1.1 Introduction......Page 18
1.2 Artificial earth satellites......Page 20
1.2.1.1 Equatorial orbits......Page 21
1.2.1.2 Inclined orbits......Page 23
1.2.2 Choice of antenna......Page 27
1.2.3 Choice of frequency......Page 33
1.2.4 Choice of polarization......Page 35
1.2.5 Choice of tracking......Page 37
1.2.6 Choice of service......Page 40
1.3.1 Atmospheric divisions......Page 41
1.3.2 Weather patterns......Page 43
1.3.2.1 Horizontal flow......Page 44
1.3.2.2 Vertical flow......Page 48
1.3.3.1 Individual rain cell characteristics......Page 50
1.3.3.2 General areal rainfall characteristics......Page 54
1.3.4 Precipitation types......Page 56
1.3.5 Raindrop characteristics and distributions......Page 58
1.3.5.2 Drop shapes......Page 59
1.3.5.3 Drop size distributions......Page 61
1.3.5.4 Rainfall rate distributions......Page 64
1.3.6 Atmospheric tides......Page 67
1.4.1 Earth station coordination......Page 74
1.4.2 Site shielding......Page 79
1.4.2.1 Knife-edge diffraction......Page 80
1.4.3 Link budget......Page 83
References......Page 91
2.1 Introduction......Page 98
2.2.1 Critical frequency......Page 103
2.2.2 Total electron content......Page 105
2.2.3 Faraday rotation......Page 106
2.2.4 Group delay......Page 109
2.2.5 Phase advance......Page 111
2.3 Ionospheric scintillation......Page 112
2.3.1 Frésnel zone......Page 113
2.3.2 Observations of gigahertz ionospheric scintillations......Page 114
2.3.3 Scintillation indices......Page 115
2.3.3.1 10.7-cm flux data......Page 120
2.3.4 Power spectra......Page 126
2.4 Ionospheric scintillation characteristics......Page 129
2.5.1 Summary of background information and early predictive modelling......Page 130
2.5.2 Current modelling procedures......Page 133
2.6 System impact......Page 135
2.6.1.1 Decrease in power......Page 136
2.6.1.2 Increase in power......Page 138
2.6.2.1 Maritime mobile links......Page 140
2.6.2.2 Fixed satellite systems......Page 141
2.6.2.3 Synthetic aperture radars......Page 142
2.6.3 System effects......Page 143
References......Page 144
3.1 Introduction......Page 150
3.2.1 Refractive index......Page 151
3.2.2 Variations of refractivity with height......Page 153
3.2.3 Ray bending......Page 157
3.2.4 Defocusing......Page 162
3.2.5 Angle of arrival and multipath effects......Page 164
3.2.6 Antenna gain reduction......Page 165
3.2.7 Phase advance......Page 166
3.3 Reflective effects......Page 169
3.3.1 Reflection from a smooth surface......Page 170
3.3.2 Reflection from rough surfaces......Page 173
3.4 Absorptive effects......Page 175
3.4.1 Oxygen and water vapour resonance lines......Page 176
3.4.2 Gaseous absorption......Page 178
3.4.3 Attenuation in fog......Page 187
3.4.4 Attenuation in clouds......Page 192
3.5 Tropospheric scintillation effects......Page 197
3.5.1 Drift measurements......Page 203
3.5.2 High latitude measurements......Page 204
3.5.3 Spectral analyses......Page 206
3.5.4 Separation of ‘wet’ and ‘dry’ tropospheric scintillations......Page 207
3.5.5 Maritime mobile communications......Page 208
3.5.6 Tropospheric scintillation characteristics......Page 212
3.6 Theory and predictive modelling of clear-air effects......Page 214
3.6.1 Summary of early theories on tropospheric scintillation......Page 216
3.6.2 Prediction procedure for determining the effective amplitude loss due to tropospheric scintillations......Page 218
3.6.3 Low angle fading......Page 221
3.6.4 Prediction models for low angle fading......Page 222
3.7.1 Phase effects......Page 224
3.7.2.2 Short-term, or turbulent, effects......Page 225
3.7.3 Systems effects......Page 228
References......Page 229
4.1 Introduction......Page 238
4.1.1 Scattering and absorption......Page 242
4.1.2 Power law relationship......Page 245
4.1.2.1 Effect of drop shapes......Page 248
4.1.2.2 Effect of drop size distribution......Page 249
4.1.2.3 Effect of temperature......Page 250
4.1.3 Multiple scattering effects......Page 252
4.1.4 Sky noise temperature......Page 254
4.2.1.1 Spatial errors......Page 255
4.2.1.2 Integration errors......Page 256
4.2.1.3 Inherent errors......Page 258
4.2.2 Radiometer measurements......Page 260
4.2.2.1 Active radiometer measurements......Page 262
4.2.2.2 Passive radiometer measurements......Page 263
4.2.2.3 Potential errors in passive radiometer measurements......Page 266
4.2.3.1 Potential errors in satellite beacon measurements......Page 271
4.2.4.1 The radar equation......Page 277
4.2.4.2 Reflectivity factor......Page 278
4.2.4.3 Differential reflectivity......Page 280
4.2.4.4 Types of radar......Page 281
4.2.4.5 CDR dual-polarized radar......Page 284
4.2.4.7 ZDR dual-polarized radar......Page 285
4.3.1 Radiometer experiments......Page 286
4.3.2 Radar experiments......Page 287
4.3.3 Satellite beacon experiments......Page 288
4.4.1.1 Interference aspects......Page 290
4.4.1.3 Diurnal variations......Page 295
4.4.2 Worst month......Page 298
4.4.2.1 Return period......Page 302
4.4.3.1 Fade duration......Page 303
4.4.3.2 Interval between successive fades......Page 305
4.4.3.3 Rate of change of attenuation......Page 307
4.4.4.1 Azimuthal variations......Page 309
4.4.4.3 Site diversity......Page 310
4.5.1 Long-term scaling......Page 321
4.5.1.1 Variable attenuation ratio......Page 322
4.5.2 Short-term frequency scaling......Page 324
4.5.3 Correlation between experimental techniques......Page 327
4.5.4 Differential effects......Page 330
4.5.4.1 Ranging errors......Page 331
4.5.4.2 Dispersion effects......Page 332
4.6.1 Single-site prediction models......Page 333
4.6.2 Effective rain height......Page 337
4.6.2.1 Virga......Page 338
4.6.2.3 Thunderstorm rain......Page 339
4.6.3 Calculation of long-term statistics for non-GSO paths......Page 343
4.6.4 Combined effects models......Page 344
4.6.5 ITU-R procedure for combining more than one path impairment......Page 345
4.6.6 Site diversity prediction models......Page 346
4.6.6.2 Prediction of site diversity advantage or improvement......Page 348
4.7 System impact......Page 350
4.7.1 Uplink fade margin......Page 351
4.7.2 Downlink degradation......Page 352
4.7.3 Service quality......Page 355
References......Page 356
5.1 Introduction......Page 372
5.2.1 Medium anisotropy: differential effects......Page 374
5.2.2.1 Tilt angle......Page 379
5.2.3 Cross-polarization discrimination and cross-polarization isolation......Page 382
5.3 Measurement techniques......Page 385
5.3.1 Basic theory......Page 386
5.3.2 Direct measurements......Page 387
5.3.3 Indirect measurements......Page 394
5.4.1 Identifying the problem......Page 397
5.4.2 Early slant-path results......Page 398
5.4.3 Variability of path depolarization in space and time......Page 402
5.4.3.1 Ice crystal depolarization: statistical significance......Page 403
5.4.3.2 Canting angles......Page 406
5.4.3.3 Differential phase and amplitude descriptors......Page 408
5.4.3.4 Seasonal characteristics......Page 411
5.4.5.1 Duration of depolarizing events......Page 412
5.4.5.2 Interval between successive depolarizing events......Page 415
5.4.6.1 Azimuth variations......Page 416
5.4.6.2 Spatial variations......Page 417
5.5.1 Long-term frequency scaling......Page 421
5.5.2 Short-term frequency scaling......Page 424
5.5.3 Correlation of attenuation and depolarization......Page 427
5.6 Depolarization prediction models......Page 429
5.6.1 Rain depolarization models......Page 430
5.6.2.1 Correlating parameter......Page 432
5.6.3 General ITU-R depolarization model......Page 433
5.6.4 Long-term frequency and polarization scaling of statistics of hydrometeor-induced XPD......Page 435
5.6.5 Joint attenuation versus XPD prediction models......Page 436
5.7.1 Co-channel interference......Page 438
5.7.2.2 Ionospheric scintillation: impact on depolarization......Page 442
References......Page 445
6.1 Introduction......Page 452
6.2 Range of propagation parameters......Page 453
6.3.2 Aeronautical mobile satellite services......Page 455
6.4 Impairment sources......Page 456
6.5.1 Maritime mobile communications......Page 458
6.5.1.1 The effect of the sea state......Page 460
6.5.1.3 The effect of polarization......Page 462
6.5.1.4 The effect of antenna gain......Page 463
6.5.1.5 Prediction procedure for calculating fade depth due to sea surface reflections......Page 465
6.5.1.7 Variability in space and time of mobile multipath effects......Page 472
6.5.1.9 Fade duration prediction......Page 474
6.5.1.10 System effects......Page 478
6.5.2 Aeronautical mobile communications......Page 480
6.5.2.1 The effect of antenna height......Page 484
6.5.2.2 The effect of speed......Page 485
6.5.3 Land mobile communications......Page 487
6.5.3.1 Effect of tree shadowing......Page 488
6.5.3.2 Effect of building blockage......Page 493
6.5.3.3 Effect of multipath......Page 496
6.5.3.4 Combined effects: shadowing, blockage and multipath......Page 500
6.5.3.5 Effects of head absorption......Page 503
6.6 Attenuation due to vegetation......Page 505
References......Page 506
7.1 Introduction......Page 512
7.2.1 Coherence aspects......Page 513
7.2.2 Frésnel zone aspects......Page 519
7.2.3 Aperture-averaging aspects......Page 522
7.2.4 Scattering aspects......Page 523
7.2.5 Space-to-Earth and Earth-to-space asymmetry aspects......Page 528
7.2.6.2 Tracking aspects......Page 530
7.2.7 Diffraction limited optics......Page 532
7.3 Atmospheric absorption at optical frequencies......Page 535
7.4 Weather models......Page 536
7.4.1 Refractive effects and beam bending......Page 537
7.4.2 Isoplanatic angle......Page 539
7.4.3 Temporal effects of atmospheric turbulence......Page 541
7.5.2 Scattering losses......Page 542
7.5.3 Amplitude scintillation......Page 543
7.6.1 The range of particles......Page 544
7.6.2.1 Variability in space and time of dust storms......Page 546
7.6.2.2 Propagation impairment prediction models for dust effects......Page 551
7.6.2.3 System impact of dust effects......Page 553
References......Page 555
8.1 Introduction......Page 558
8.2 Ionospheric propagation effects......Page 559
8.2.1 Meliorating the effects of ionospheric amplitude scintillation......Page 560
8.2.1.1 FEC coding with interleaving......Page 561
8.2.1.2 FEC coding with concatenated outer code......Page 562
8.2.1.3 FM transmissions......Page 563
8.2.2 Faraday rotation amelioration......Page 564
8.3 Tropospheric scintillation effects......Page 566
8.3.2 Low angle fading: ameliorating the atmospheric multipath effects......Page 567
8.3.4 Weather maps......Page 568
8.4 Maritime multipath effects......Page 574
8.4.3 Polarization-shaping antennas......Page 575
8.4.4 Beam-shaping antennas......Page 576
8.5 Rain-attenuation effects......Page 577
8.5.1.1 Constant margin increase......Page 581
8.5.1.2 Constant FEC code......Page 582
8.5.2.1 Earth-based allocation......Page 584
8.5.2.2 Satellite-based allocation......Page 603
8.5.3 Detecting the impairment......Page 610
8.6 Depolarization effects......Page 611
8.6.1 Techniques below 10 GHz......Page 612
8.6.2 Techniques above 10 GHz......Page 615
8.7 Interference......Page 616
8.7.1 General representation......Page 617
8.7.2.2 Differential path interference......Page 618
8.7.2.3 Rain-scatter coupling......Page 619
8.7.3.1 Spread-spectrum coding......Page 620
8.7.3.2 Frequency addressable antennas......Page 621
8.8 Procedures for automated analysis......Page 624
References......Page 625
Appendix 1: Terms and definitions relating to space radiocommunications......Page 636
A2.1 Equations that appear in the text or are referred to in the text......Page 646
A2.2 Calculation of the elevation and azimuth angles of an earth station operating to a geostationary satellite......Page 659
A2.3 Some useful constants......Page 660
Reference......Page 661
Appendix 3: Glossary of terms and acronyms......Page 662
European technical standards (ETS) for VSAT systems......Page 674
Appendix 4: ITU-R propagation series recommendations......Page 676
Index......Page 680