Robustness in data analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The field of mathematical statistics called robustness statistics deals with the stability of statistical inference under variations of accepted distribution models. Although robustness statistics involves mathematically highly defined tools, robust methods exhibit a satisfactory behaviour in small samples, thus being quite useful in applications. This volume addresses various topics in the field of robust statistics and data analysis, such as: a probability-free approach in data analysis; minimax variance estimators of location, scale, regression, autoregression and correlation; L1-norm methods; adaptive, data reduction, bivariate boxplot, and multivariate outlier detection algorithms; applications in reliability, detection of signals, and analysis of the sudden cardiac death risk factors. The text contains results related to robustness and data analysis technologies, including both theoretical aspects and practical needs of data processing.

Author(s): Georgy L. Shevlyakov, Nikita O. Vilchevski
Series: Modern Probability and Statistics, 6
Edition: draft
Publisher: Walter de Gruyter
Year: 2001

Language: English
Pages: 320
Tags: Математика;Теория вероятностей и математическая статистика;Математическая статистика;