Reference focusing on the interaction between algebra and algebraic geometry in ring theory, with research papers and surveys from international contributors from more than 15 countries. Describes abelian groups and lattices, cones and fans, and algebras and binomial ideals, among other topics. Softcover.
Author(s): A. Granja, J.A. Hermida Alonso, A Verschoren
Series: Lecture notes in pure and applied mathematics 221
Edition: 1
Publisher: Marcel Dekker
Year: 2001
Language: English
Pages: 353
City: New York
EEn......Page 0
Ring Theory and Algebraic Geometry......Page 1
Back Cover......Page 2
Copyright Info......Page 5
Preface......Page 11
TOC......Page 12
Contributors......Page 14
Conference Participants......Page 16
1 INTRODUCTION......Page 23
2 SEPARABLE FUNCTORS AND FROBENIUS PAIRS OF FUNCTORS......Page 25
3 ENTWINED MODULES AND DOI- HOPF MODULES......Page 29
4 THE FUNCTOR FORGETTING THE COACTION......Page 31
5 THE FUNCTOR FORGETTING THE A- ACTION......Page 41
6 THE SMASH PRODUCT......Page 49
REFERENCES......Page 52
1 INTRODUCTION......Page 54
2 ADMISSIBLE ORDERS IN MONOIDEALS AND STABLE SUBSETS......Page 55
3 PBW ALGEBRAS, QUANTUM RELATIONS AND FILTRATIONS......Page 58
4 CONSEQUENCES AND EXAMPLES......Page 65
5 GROBNER BASES FOR MODULES......Page 69
6 HOMOGENEOUS GROBNER BASES......Page 72
7 THE GELFAND-KIRILLOV DIMENSION......Page 74
References......Page 76
1 INTRODUCTION......Page 79
2.1 Obtaining laws of families of filiform Lie algebras......Page 82
2.2 Low-dimensional filiform Lie algebras......Page 83
2.3 /c-abelian filiform Lie algebras......Page 85
3.1 p- filiform Lie algebras with p > n — 3......Page 86
3.3 p-filiform Lie algebras with n — 6 < p < n — 5......Page 88
4 LIE ALGEBRAS WITH SMALL NILINDEX......Page 89
4.1 Metabelian Lie algebras......Page 90
5 NATURALLY GRADED NILPOTENT LIE ALGEBRAS......Page 92
5.1 Naturally Graded filiform and Quasi- filiform Lie Algebras......Page 93
5.2 Naturally Graded 3-filiform Lie Algebras......Page 95
6 LENGTH OF NILPOTENT LIE ALGEBRAS......Page 97
6.2 Filiform Lie Algebra of maximum Length......Page 98
6.3 Quasi- filiform Lie algebras of length greater than their nilindex......Page 100
7 SYMBOLIC CALCULUS ON LIE ALGEBRAS......Page 101
REFERENCES......Page 102
1 PREVIOUS RESULTS ON //-TRIPLES......Page 107
2 PREVIOUS RESULTS ON JORDAN //"-PAIRS......Page 109
3 MAIN RESULTS......Page 111
REFERENCES......Page 114
I INTRODUCTION......Page 115
2 SEMIGROUP AND GENERATORS OF TORIC GEOMETRY......Page 116
3 ABELIAN GROUPS AND LATTICES......Page 117
4 SEMIGROUP IDEALS AND ALGEBRAS......Page 118
5 CONES AND FANS......Page 120
6 AFFINE AND PROJECTIVE TORIC VARIETIES......Page 121
7 POLYTOPES, SIMPLICIAL AND CELLULAR COMPLEXES......Page 123
8 MULTINUMERICAL SEMIGROUPS......Page 128
9 APPLICATIONS......Page 129
REFERENCES......Page 131
1 INTRODUCTION......Page 133
2 LINEAR DYNAMICAL SYSTEMS OVER COMMUTATIVE RINGS: THE FEEDBACK GROUP......Page 134
3 CANONICAL FORM FOR SYSTEMS OVER FIELDS......Page 136
4 DEALING WITH THE LOCAL CASE......Page 141
REFERENCES......Page 150
I INTRODUCTION......Page 152
2.1 Janet modules......Page 153
3 COMPLETELY INTEGRABLE SYSTEMS. JANET BASES......Page 154
4.1 Homogeneous systems......Page 155
4.2 Non-homogeneous systems......Page 159
REFERENCES......Page 161
1 INTRODUCTION......Page 165
2 PRELIMINARIES......Page 166
3 THE PICARD GROUP......Page 168
3.1 Definitions and properties......Page 169
3.2 The Aut-Pic property......Page 170
4.1 Definitions and properties......Page 174
4.2 Torsioness in the Brauer group......Page 178
4.3 Subgroups of the Brauer group......Page 183
REFERENCES......Page 187
1 INTRODUCTION......Page 190
2 MONOIDAL CATEGORIES......Page 191
3 GENERAL PROPERTIES OF MULTIPLICATION OBJECTS......Page 194
4 ENDOMORPHISMS OF MULTIPLICATION OBJECTS......Page 199
REFERENCES......Page 202
1 SEMILOCAL RINGS AND MODULES WHOSE ENDOMORPHISM RING IS SEMILOCAL......Page 204
2 K0 OF A SEMILOCAL RING......Page 207
3 UNISERIAL MODULES......Page 212
4 HOMOGENEOUS SEMILOCAL RINGS AND MODULES WHOSE ENDOMORPHISM RING IS HOMOGENEOUS SEMILOCAL......Page 215
REFERENCES......Page 217
1 INTRODUCTION......Page 219
2.1 Maximal ideals......Page 220
2.3 Normalization of unimodular vectors......Page 222
3 APPLICATIONS TO K-THEORY......Page 223
REFERENCES......Page 225
1 INTRODUCTION......Page 227
2 PERFECT RINGS AND PSEUDO-FROBENIUS RINGS......Page 229
3 RINGS WHOSE CLASS OF FINITE-DIMENSIONAL MODULES IS SOCLE-FINE......Page 231
4 RADICAL-FINE CHARACTERIZATION OF RINGS......Page 234
REFERENCES......Page 236
1 PRELIMINARY RESULTS......Page 238
2 IDEMPOTENTS......Page 240
3 RELATIONS WITH OTHER CLASSES OF ALGEBRAS......Page 242
4 BERNSTEIN PROBLEM......Page 244
5 AUTOMORPHISMS AND DERIVATIONS......Page 245
6 SOME OTHER ASPECTS......Page 247
REFERENCES......Page 251
1 INTRODUCTION......Page 255
2 HOMOGENIZATION OF DIFFERENTIAL OPERATORS......Page 259
3 COMPUTATION OF THE BERNSTEIN POLYNOMIAL......Page 261
REFERENCES......Page 263
I INTRODUCTION......Page 265
3 COHEN-MACAULAY CONDITION......Page 266
4 RESULTS......Page 267
REFERENCES......Page 269
1 INTRODUCTION......Page 271
2 DIVISORS......Page 274
3 DIVISOR CLASS GROUP......Page 280
4 THE EXPECTED CANONICAL MODULE......Page 283
5 THE FUNDAMENTAL DIVISOR......Page 286
6 COHEN-MACAULAY DIVISORS AND REDUCTION NUMBERS......Page 294
7 VANISHING OF COHOMOLOGY......Page 295
REFERENCES......Page 300
1 INTRODUCTION......Page 303
2 IRREDUCIBLE MONOMIAL CURVES......Page 304
3 REDUCED MONOMIAL CURVES......Page 305
4 MONOMIAL CURVES AND EULER VECTOR FIELDS......Page 306
5 ALGORITHM......Page 307
REFERENCES......Page 309
1 INTRODUCTION......Page 311
2 GENERALITIES......Page 312
3 INVOLUTIVE INVARIANTS OF THE SECOND KIND......Page 313
4 AMITSUR COHOMOLOGY......Page 316
REFERENCES......Page 323
1 INTRODUCTION......Page 325
2 DEFINITIONS......Page 326
3 FINITENESS OF THE NUMBER OF SLOPES......Page 328
4 A WAY OF COMPUTING AL M......Page 330
6 ABOUT THE COMPUTATIONS IN V.......Page 331
7.1 Slopes of O [ l / f ] / O .......Page 334
7.2 Looking for slopes in a syzygy module......Page 335
7.3 Slopes and direct sums of ideals......Page 336
REFERENCES......Page 337
1 INTRODUCTION......Page 339
2 SOME BACKGROUND ON CLOSED CATEGORIESo......Page 340
3 MONOIDS WITH INVOLUTION......Page 344
4 THE INVOLUTIVE BRAUER GROUP......Page 345
5 FUNCTORIAL BEHAVIOUR......Page 348
REFERENCES......Page 351