Reference focusing on the interaction between algebra and algebraic geometry in ring theory, with research papers and surveys from international contributors from more than 15 countries. Describes abelian groups and lattices, cones and fans, and algebras and binomial ideals, among other topics
Author(s): A. Granja, J.A. Hermida Alonso, A Verschoren
Series: Lecture notes in pure and applied mathematics 221
Edition: 1
Publisher: Marcel Dekker
Year: 2001
Language: English
Pages: 354
City: New York
EEn......Page 1
Ring Theory and Algebraic Geometry......Page 2
Back Cover......Page 3
Copyright Info......Page 6
Preface......Page 12
TOC......Page 13
Contributors......Page 15
Conference Participants......Page 17
1 INTRODUCTION......Page 24
2 SEPARABLE FUNCTORS AND FROBENIUS PAIRS OF FUNCTORS......Page 26
3 ENTWINED MODULES AND DOI- HOPF MODULES......Page 30
4 THE FUNCTOR FORGETTING THE COACTION......Page 32
5 THE FUNCTOR FORGETTING THE A- ACTION......Page 42
6 THE SMASH PRODUCT......Page 50
REFERENCES......Page 53
1 INTRODUCTION......Page 55
2 ADMISSIBLE ORDERS IN MONOIDEALS AND STABLE SUBSETS......Page 56
3 PBW ALGEBRAS, QUANTUM RELATIONS AND FILTRATIONS......Page 59
4 CONSEQUENCES AND EXAMPLES......Page 66
5 GROBNER BASES FOR MODULES......Page 70
6 HOMOGENEOUS GROBNER BASES......Page 73
7 THE GELFAND-KIRILLOV DIMENSION......Page 75
References......Page 77
1 INTRODUCTION......Page 80
2.1 Obtaining laws of families of filiform Lie algebras......Page 83
2.2 Low-dimensional filiform Lie algebras......Page 84
2.3 /c-abelian filiform Lie algebras......Page 86
3.1 p- filiform Lie algebras with p > n — 3......Page 87
3.3 p-filiform Lie algebras with n — 6 < p < n — 5......Page 89
4 LIE ALGEBRAS WITH SMALL NILINDEX......Page 90
4.1 Metabelian Lie algebras......Page 91
5 NATURALLY GRADED NILPOTENT LIE ALGEBRAS......Page 93
5.1 Naturally Graded filiform and Quasi- filiform Lie Algebras......Page 94
5.2 Naturally Graded 3-filiform Lie Algebras......Page 96
6 LENGTH OF NILPOTENT LIE ALGEBRAS......Page 98
6.2 Filiform Lie Algebra of maximum Length......Page 99
6.3 Quasi- filiform Lie algebras of length greater than their nilindex......Page 101
7 SYMBOLIC CALCULUS ON LIE ALGEBRAS......Page 102
REFERENCES......Page 103
1 PREVIOUS RESULTS ON //-TRIPLES......Page 108
2 PREVIOUS RESULTS ON JORDAN //"-PAIRS......Page 110
3 MAIN RESULTS......Page 112
REFERENCES......Page 115
I INTRODUCTION......Page 116
2 SEMIGROUP AND GENERATORS OF TORIC GEOMETRY......Page 117
3 ABELIAN GROUPS AND LATTICES......Page 118
4 SEMIGROUP IDEALS AND ALGEBRAS......Page 119
5 CONES AND FANS......Page 121
6 AFFINE AND PROJECTIVE TORIC VARIETIES......Page 122
7 POLYTOPES, SIMPLICIAL AND CELLULAR COMPLEXES......Page 124
8 MULTINUMERICAL SEMIGROUPS......Page 129
9 APPLICATIONS......Page 130
REFERENCES......Page 132
1 INTRODUCTION......Page 134
2 LINEAR DYNAMICAL SYSTEMS OVER COMMUTATIVE RINGS: THE FEEDBACK GROUP......Page 135
3 CANONICAL FORM FOR SYSTEMS OVER FIELDS......Page 137
4 DEALING WITH THE LOCAL CASE......Page 142
REFERENCES......Page 151
I INTRODUCTION......Page 153
2.1 Janet modules......Page 154
3 COMPLETELY INTEGRABLE SYSTEMS. JANET BASES......Page 155
4.1 Homogeneous systems......Page 156
4.2 Non-homogeneous systems......Page 160
REFERENCES......Page 162
1 INTRODUCTION......Page 166
2 PRELIMINARIES......Page 167
3 THE PICARD GROUP......Page 169
3.1 Definitions and properties......Page 170
3.2 The Aut-Pic property......Page 171
4.1 Definitions and properties......Page 175
4.2 Torsioness in the Brauer group......Page 179
4.3 Subgroups of the Brauer group......Page 184
REFERENCES......Page 188
1 INTRODUCTION......Page 191
2 MONOIDAL CATEGORIES......Page 192
3 GENERAL PROPERTIES OF MULTIPLICATION OBJECTS......Page 195
4 ENDOMORPHISMS OF MULTIPLICATION OBJECTS......Page 200
REFERENCES......Page 203
1 SEMILOCAL RINGS AND MODULES WHOSE ENDOMORPHISM RING IS SEMILOCAL......Page 205
2 K0 OF A SEMILOCAL RING......Page 208
3 UNISERIAL MODULES......Page 213
4 HOMOGENEOUS SEMILOCAL RINGS AND MODULES WHOSE ENDOMORPHISM RING IS HOMOGENEOUS SEMILOCAL......Page 216
REFERENCES......Page 218
1 INTRODUCTION......Page 220
2.1 Maximal ideals......Page 221
2.3 Normalization of unimodular vectors......Page 223
3 APPLICATIONS TO K-THEORY......Page 224
REFERENCES......Page 226
1 INTRODUCTION......Page 228
2 PERFECT RINGS AND PSEUDO-FROBENIUS RINGS......Page 230
3 RINGS WHOSE CLASS OF FINITE-DIMENSIONAL MODULES IS SOCLE-FINE......Page 232
4 RADICAL-FINE CHARACTERIZATION OF RINGS......Page 235
REFERENCES......Page 237
1 PRELIMINARY RESULTS......Page 239
2 IDEMPOTENTS......Page 241
3 RELATIONS WITH OTHER CLASSES OF ALGEBRAS......Page 243
4 BERNSTEIN PROBLEM......Page 245
5 AUTOMORPHISMS AND DERIVATIONS......Page 246
6 SOME OTHER ASPECTS......Page 248
REFERENCES......Page 252
1 INTRODUCTION......Page 256
2 HOMOGENIZATION OF DIFFERENTIAL OPERATORS......Page 260
3 COMPUTATION OF THE BERNSTEIN POLYNOMIAL......Page 262
REFERENCES......Page 264
I INTRODUCTION......Page 266
3 COHEN-MACAULAY CONDITION......Page 267
4 RESULTS......Page 268
REFERENCES......Page 270
1 INTRODUCTION......Page 272
2 DIVISORS......Page 275
3 DIVISOR CLASS GROUP......Page 281
4 THE EXPECTED CANONICAL MODULE......Page 284
5 THE FUNDAMENTAL DIVISOR......Page 287
6 COHEN-MACAULAY DIVISORS AND REDUCTION NUMBERS......Page 295
7 VANISHING OF COHOMOLOGY......Page 296
REFERENCES......Page 301
1 INTRODUCTION......Page 304
2 IRREDUCIBLE MONOMIAL CURVES......Page 305
3 REDUCED MONOMIAL CURVES......Page 306
4 MONOMIAL CURVES AND EULER VECTOR FIELDS......Page 307
5 ALGORITHM......Page 308
REFERENCES......Page 310
1 INTRODUCTION......Page 312
2 GENERALITIES......Page 313
3 INVOLUTIVE INVARIANTS OF THE SECOND KIND......Page 314
4 AMITSUR COHOMOLOGY......Page 317
REFERENCES......Page 324
1 INTRODUCTION......Page 326
2 DEFINITIONS......Page 327
3 FINITENESS OF THE NUMBER OF SLOPES......Page 329
4 A WAY OF COMPUTING AL M......Page 331
6 ABOUT THE COMPUTATIONS IN V.......Page 332
7.1 Slopes of O [ l / f ] / O .......Page 335
7.2 Looking for slopes in a syzygy module......Page 336
7.3 Slopes and direct sums of ideals......Page 337
REFERENCES......Page 338
1 INTRODUCTION......Page 340
2 SOME BACKGROUND ON CLOSED CATEGORIESo......Page 341
3 MONOIDS WITH INVOLUTION......Page 345
4 THE INVOLUTIVE BRAUER GROUP......Page 346
5 FUNCTORIAL BEHAVIOUR......Page 349
REFERENCES......Page 352