Riemannian Geometry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Wilhelm P. A. Klingenberg
Edition: 2
Publisher: Walter de Gruyter
Year: 1995

Language: English

Title page
Prefaces
Chapter 1: Foundations
1.0 Review of Differential Calculus and Topology
1.1 Differentiable Manifolds
1.2 Tensor Bundles
1.3 Immersions and Submersions
1.4 Vector Fields and Tensor Fields
1.5 Covariant Derivation
1.6 The Exponential Mapping
1.7 Lie Groups
1.8 Riemannian Manifolds
1.9 Geodesies and Convex Neighborhoods
1.10 Isometric Immersions
1.11 Riemannian Curvature
1.12 Jacobi Fields
Chapter 2: Curvature and Topology
2.1 Completeness and Cut Locus
2.1 Appendix - Orientation
2.2 Symmetric Spaces
2.3 The Hilbert Manifold of H¹-curves
2.4 The Loop Space and the Space of Closed Curves
2.5 The Second Order Neighborhood of a Critical Point
2.5 Appendix - The S¹- and the Z₂-action on AM
2.6 Index and Curvature
2.6 Appendix - The Injectivity Radius for 1/4-pinched Manifolds
2.7 Comparison Theorems for Triangles
2.8 The Sphere Theorem
2.9 Non-compact Manifolds of Positive Curvature
Chapter 3: Structure of the Geodesic Flow
3.1 Hamiltonian Systems
3.2 Properties of the Geodesic Flow
3.3 Stable and Unstable Motions
3.4 Geodesics on Surfaces
3.5 Geodesics on the Ellipsoid
3.6 Closed Geodesics on Spheres
3.7 The Theorem of the Three Closed Geodesics
3.8 Manifolds of Non-Positive Curvature
3.9 The Geodesic Flow on Manifolds of Negative Curvature
3.10 The Main Theorem for Surfaces of Genus 0
References
Index