Resultants and the Hermite Normal Form

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Christopher Tibor Agh
Series: PhD thesis at University of California, Santa Barbara
Year: 2003

Language: English

1 Introduction 1
1.1 Polynom ials .......................................................................................... 1
1.2 R esultants ............................................................................................. 3
1.3 Multivariate polynomials ................................................................. 6
1.4 Symmetric fu n ction s ........................................................................ 7
1.5 The Resultant in terms of the ro o ts ............................................ 9
1.6 Two resultant resu lts ........................................................................ 11
1.6.1 The discrim inant ................................................................ 11
1.6.2 Cyclotomic polynom ials .................................................. 13
1.7 Subresultants ...................................................................................... 17
2 Equivalence of m atrices 23
2.1 Definitions ............................................................................................. 23
2.2 One-sided equivalence ..................................................................... 25
2.3 Two-sided eq u ivalen ce ....................................................................... 28
3 The Integral polynom ial range 32
3.1 Introduction .......................................................................................... 32
3.2 Preliminaries ...................................................................................... 33
3.3 The Bigradient, Gp ............................................................................ 34
3.4 The Infinite Bigradient, G0 0 .......................................................... 39
3.5 Examples and corollaries ................................................................. 46
3.6 Monic polynomials and the resultant m a trix ............................ 51
3.7 A bound for the stability of G ^ ................................................... 59
4 R elated Topics 61
4.1 The Rational Polynomial R ange ................................................... 61
4.2 Matrix rings and multivariate polynom ials .............................. 63
Bibliography 66