Representations of Algebras

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Graham J. Leuschke, Frauke Bleher, Ralf Schiffler, Dan Zacharia (eds.)
Series: Contemporary Mathematics 705
Publisher: American Mathematical Society
Year: 2018

Language: English
Pages: 293

Cover......Page 1
Title page......Page 4
Contents......Page 6
Preface......Page 8
1. Introduction......Page 10
2.1. Two preliminary results......Page 12
2.2. Torsion pairs......Page 13
2.3. The category of extensions......Page 16
2.4. Universal extensions......Page 18
2.5. Relation to module categories......Page 21
3.1. Some isogeny categories......Page 24
3.2. More isogeny categories......Page 30
3.3. Functors of points......Page 36
3.4. Finiteness conditions for Hom and Ext groups......Page 38
3.5. Finiteness representation type: an example......Page 40
References......Page 43
1. Introduction......Page 46
2. Reflection groups......Page 47
3. (Noncommutative) resolutions of singularities......Page 50
4. The classical McKay correspondence......Page 52
5. NCRs of discriminants......Page 56
References......Page 58
Introduction......Page 62
1. Graded Upper Cluster Algebras......Page 64
2. Auslander-Reiten theory of Presentations......Page 65
3. Cluster Character from Quiver with Potential......Page 70
4. iARt QPs......Page 71
5. Remarks on Non-simply Laced Cases......Page 74
References......Page 76
1. Introduction......Page 78
2. Multiserial and special multiserial algebras......Page 79
4. Brauer configurations and Brauer configuration algebras......Page 80
5. Connection results......Page 81
6. Examples......Page 82
7. Almost gentle algebras......Page 83
9. Radical cubed zero......Page 84
References......Page 85
1. Introduction......Page 88
2. Preliminaries......Page 89
3. Higher Nakayama algebras......Page 93
4. Obstructions to an alternative definition of higher Nakayama algebras......Page 97
5. Cluster categories of type _{} and _{∞}......Page 100
References......Page 105
1. Background and context......Page 108
2. Lacing diagrams......Page 110
3. K-polynomials of quiver orbit closures......Page 114
4. The component formula......Page 117
5. Open problems......Page 119
References......Page 120
Krull–Gabriel dimension and the Ziegler spectrum......Page 124
1. Purity in categories of modules......Page 125
2. The Krull–Gabriel dimension of ℛ......Page 130
3. Examples......Page 133
References......Page 137
Introduction......Page 140
1. Coherent sheaves on a smooth projective curve......Page 141
1.1. The Euler form......Page 142
1.2. Shift action associated to a point......Page 145
1.3. The divisor sequence......Page 146
2.1. The category of -cycles......Page 148
2.2. The reduced (or numerical) Grothendieck group......Page 150
2.3. Attaching tubes......Page 151
2.4. Orbifold Euler characteristic and weighted Riemann-Roch......Page 152
2.5. Impact of the Euler characteristic......Page 153
2.6. Shift action, weighted divisor group and weighted Picard group......Page 155
2.7. The localization sequence......Page 158
Appendix A. Multiplicative structure......Page 159
References......Page 161
Introduction......Page 164
1. Properties of blocks of finite group algebras......Page 165
2. Basic algebras of dimension at most 12 of blocks......Page 166
3. Defect groups of block algebras......Page 172
4. Some finiteness conjectures......Page 174
5. Hochschild cohomology background......Page 177
6. ⁰()......Page 179
7. ¹()......Page 180
8. Integrable derivations......Page 183
9. Invariance properties of integrable derivations......Page 185
10. Separably equivalent algebras......Page 187
11. Finitistic and dominant dimensions......Page 189
12. Fusion and algebra structure of blocks......Page 191
References......Page 194
1. Introduction......Page 198
2. Preliminaries......Page 200
3. The bristled modules for =1 and =2.......Page 202
4. Proof of the main theorem.......Page 203
5. Further considerations.......Page 216
Appendix A. The bristle variety () of a Kronecker module .......Page 219
Appendix B. Bristled modules for arbitrary artin algebras.......Page 220
Appendix C. A non-finiteness assertion for tame algebras.......Page 222
References......Page 223
1. Introduction......Page 224
2. Two examples......Page 225
3. Twisted commutative algebras......Page 226
4. Noetherian properties......Page 229
5. What next?......Page 231
References......Page 232
Introduction......Page 234
1. Tensor triangulated categories and Balmer spectra......Page 235
2. Compactly and cocompactly generated thick tensor ideals of \dm()......Page 241
3. The Balmer spectrum of \dm() and classifications of thick tensor ideals......Page 246
4. The case of discrete valuation rings and applications......Page 256
References......Page 259
1. Semistable subcategories......Page 260
2. Preprojective algebras......Page 262
3. Weyl groups......Page 263
4. Shards......Page 264
5. Join-irreducibles of and bricks of Π......Page 267
6. Technical Lemmas......Page 268
7. Proof of Main Theorem......Page 269
References......Page 270
1. Introduction......Page 272
2. Applications of the constants (,) and (,)......Page 275
3. Computations of (,) and (,)......Page 282
References......Page 289
Back Cover......Page 293