Author(s): D. J. Benson
Series: Cambridge Studies in Advanced Mathematics 31
Publisher: CUP
Year: 1991
Language: English
Pages: 291
Contents......Page 5
Introduction......Page 9
1.1. Spaces of maps......Page 13
1.2. Homotopy groups......Page 14
1.3. The Hurewicz theorem......Page 21
1.4. The Whitehead theorem......Page 23
1.5. CW-complexes and cellular homology......Page 24
1.6. Fibrations and fibre bundles......Page 28
1.7. Paracompact spaces......Page 33
1.8. Simplicial sets......Page 35
1.9. The Milnor exact sequence......Page 39
2.1. Overview of group cohomology......Page 41
2.2. Eilenberg-Mac Lane spaces......Page 44
2.3. Principal G-bundles......Page 47
2.4. Classifying spaces......Page 49
2.5. K-theory......Page 56
2.6. Characteristic classes......Page 60
2.7. Transfer......Page 63
2.8. Stable cohomotopy and the Segal conjecture......Page 68
2.9. Cohomology of general linear groups......Page 72
2.10. The plus construction and algebraic K-theory......Page 80
2.11. Hochschild homology......Page 85
2.12. Free loops on BG......Page 89
2.13. Cyclic homology......Page 92
2.14. Cyclic sets......Page 97
2.15. Extended centralisers......Page 102
3.1. Introduction to spectral sequences......Page 105
3.2. The spectral sequence of a filtered chain complex......Page 110
3.3. The spectral sequence of a fibration......Page 116
3.4. The spectral sequence of a double complex......Page 118
3.5. The spectral sequence of a group extension......Page 121
3.6. The Kiinneth spectral sequence......Page 123
3.7. The Eilenberg-Moore spectral sequence......Page 124
3.8. The Atiyah spectral sequence......Page 126
3.9. Products in spectral sequences......Page 127
3.10. Equivariant cohomology and finite generation......Page 129
4.1. The Evens norm map......Page 133
4.2. Finite generation of cohomology......Page 138
4.3. The Bockstein homomorphism......Page 144
4.4. Steenrod operations......Page 148
4.5. Proof of the properties......Page 150
4.6. Adem relations......Page 156
4.7. Serre's theorem on products of Bocksteins......Page 160
4.8. Steenrod operations and spectral sequences......Page 162
5.1. Overview and historical background......Page 165
5.2. Restriction to elementary abelian subgroups......Page 167
5.3. Poincare series and complexity......Page 169
5.4. Varieties and commutative algebra......Page 173
5.5. Example: extraspecial 2-groups......Page 181
5.6. The Quillen stratification......Page 184
5.7. Varieties for modules......Page 188
5.8. Rank varieties......Page 192
5.9. The modules L(......Page 198
5.10. Periodic modules......Page 203
5.11. Andrews' theorem......Page 204
5.12. The variety of an indecomposable kG-module is connected......Page 206
5.13. Example: dihedral 2-groups......Page 207
5.14. Multiple complexes......Page 211
5.15. Gaps in group cohomology......Page 217
5.16. Isomorphisms in group cohomology......Page 220
5.17. Poincare duality......Page 221
5.18. Cohen-Macaulay cohomology rings......Page 223
6.1. G-simplicial complexes......Page 227
6.2. G-posets......Page 229
6.3. The Lefschetz Invariant......Page 230
6.4. Equivariant homotopy......Page 232
6.5. Quillen's lemma......Page 234
6.6. Equivalences of subgroup complexes......Page 236
6.7. The generalised Steinberg module......Page 238
6.8. Chevalley groups: a crash course......Page 240
6.9. Steinberg module inversion and Alperin's conjecture......Page 245
7.1. Loca l coefficients......Page 249
7.2. Cons tructions on coefficient systems......Page 251
7.3. Chai n complexes and homology of coefficient systems......Page 254
7.4. Sym plectic and orthogonal groups......Page 255
7.5. Smit h's theorem and universal coefficient systems......Page 258
Bibliography......Page 263
Index......Page 281