Representation Theory - Current Trends and Perspectives

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

From April 2009 until March 2016, the German Science Foundation supported generously the Priority Program SPP 1388 in Representation Theory. The core principles of the projects realized in the framework of the priority program have been categorification and geometrization, this is also reflected by the contributions to this volume. Apart from the articles by former postdocs supported by the priority program, the volume contains a number of invited research and survey articles, many of them are extended versions of talks given at the last joint meeting of the priority program in Bad Honnef in March 2015. This volume is covering current research topics from the representation theory of finite groups, of algebraic groups, of Lie superalgebras, of finite dimensional algebras and of infinite dimensional Lie groups. Graduate students and researchers in mathematics interested in representation theory will find this volume inspiring. It contains many stimulating contributions to the development of this broad and extremely diverse subject. Keywords: Algebraic groups, bounded and semibounded representations, categorification, character formulae, cluster algebras, Deligne-Lusztig theory, flat degenerations, geometrization, higher representation theory, highest weight categories, infinite dimensional Lie groups, local-global conjectures, special varieties, topological field theory

Author(s): Henning Krause, Peter Littelmann, Gunter Malle, Karl-Hermann Neeb, Christoph Schweigert (eds.)
Series: EMS Series of Congress Reports
Publisher: European Mathematical Society
Year: 2017

Language: English
Pages: 773
Tags: Algebraic Geometry;Geometry & Topology;Mathematics;Science & Math