Remote Sensing with Polarimetric Radar

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Discover the principles and techniques of remote sensing with polarimetric radar

This book presents the principles central to understanding polarized wave transmission, scattering, and reception in communication systems and polarimetric and non-polarimetric radar. Readers gain new insight into the methods for remotely gathering data about the earth's surface and atmosphere with polarimetric synthetic-aperture radar and polarimetric interferometry, including the changes that take place with seasons, floods, earthquakes, and other natural phenomena. In particular, with the book's focus on polarimetric radars, readers discover how to exploit the many special features of these systems, which provide the maximum amount of information that can be obtained remotely with radar.

Introductory-level coverage of electromagnetic wave propagation, antennas, radar and synthetic aperture radar, probability and random processes, and radar interferometry serves as a foundation for advancing to more complex material. A more advanced mathematical and technical treatment enables readers to fully grasp polarized wave transmission, propagation, and reception in communication systems and polarimetric-radar remote sensing. Readers will discover much new material in this text, including:

  • Distinguishing between coherently-measured and incoherently-measured target matrices for power, recognizing that the two matrix types are not equivalent in representing targets
  • Removing unpolarized components from the scattered wave and deriving a target matrix for classification from the resulting coherently-scattered wave
  • Selecting an antenna polarization to maximize the contrast between desired and undesired depolarizing targets

Problems ranging in complexity from introductory to challenging are presented throughout the text.

Engineers will find this an ideal reference to help them fully utilize the powerful capabilities of polarimetric radar. It will also help agronomists, geographers, meteorologists, and other scientists who use remotely obtained data about the earth to evaluate procedures and better interpret the data. The book can also be tailored to both undergraduate and graduate courses in remote sensing, and recommendations are given for text material suitable for such courses.

Author(s): Harold Mott
Edition: 1
Publisher: Wiley-IEEE Press
Year: 2007

Language: English
Pages: 327
Tags: Приборостроение;Обработка сигналов;

REMOTE SENSING WITH POLARIMETRIC RADAR......Page 3
CONTENTS......Page 9
PREFACE......Page 15
ACKNOWLEDGMENTS......Page 17
1. ELECTROMAGNETIC WAVES......Page 19
1.1. The Time-Invariant Maxwell Equations......Page 20
1.2. The Electromagnetic Traveling Wave......Page 21
1.3. Power Density......Page 24
1.4. The Polarization Ellipse......Page 25
1.6. Circular Wave Components......Page 29
1.7. Change of Polarization Basis......Page 30
1.8. Ellipse Characteristics in Terms of P and Q......Page 32
1.9. Coherency and Stokes Vectors......Page 33
1.10. The Poincaré Sphere......Page 35
Problems......Page 37
2.1. Elements of the Antenna System......Page 39
2.2. The Vector Potentials......Page 40
2.3. Solutions for the Vector Potentials......Page 42
2.4. Far-Zone Fields......Page 43
2.5. Radiation Pattern......Page 46
2.6. Gain and Directivity......Page 48
2.7. The Receiving Antenna......Page 52
2.9. Antenna Arrays......Page 59
2.10. Effective Length of an Antenna......Page 65
2.11. Reception of Completely Polarized Waves......Page 66
2.12. Gain, Effective Area, and Radiation Resistance......Page 69
2.14. Polarization Efficiency......Page 70
2.16. Alignment of Antennas......Page 72
Problems......Page 75
3.1. Radar Targets......Page 77
3.2. The Jones Matrix......Page 79
3.3. The Sinclair Matrix......Page 80
3.4. Matrices With Relative Phase......Page 82
3.6. Relationship Between Jones and Sinclair Matrices......Page 83
3.7. Scattering with Circular Wave Components......Page 84
3.8. Backscattering......Page 85
3.10. Change of Polarization Basis: The Scattering Matrix......Page 86
3.11. Polarizations for Maximum and Minimum Power......Page 88
3.12. The Polarization Fork......Page 95
3.13. Nonaligned Coordinate Systems......Page 99
3.14. Determination of Scattering Parameters......Page 100
References......Page 106
Problems......Page 107
4. AN INTRODUCTION TO RADAR......Page 109
4.1. Pulse Radar......Page 110
4.3. Directional Properties of Radar Measurements......Page 116
4.4. Resolution......Page 117
4.5. Imaging Radar......Page 122
4.6. The Traditional Radar Equation......Page 123
4.7. The Polarimetric Radar Equation......Page 125
4.8. A Polarimetric Radar......Page 126
4.9. Noise......Page 128
Problems......Page 135
5.1. Creating a Terrain Map......Page 137
5.2. Range Resolution......Page 142
5.3. Azimuth Resolution......Page 143
5.4. Geometric Factors......Page 150
5.6. SAR Errors......Page 151
5.7. Height Measurement......Page 154
5.8. Polarimetric Interferometry......Page 159
5.9. Phase Unwrapping......Page 160
Problems......Page 165
6. PARTIALLY POLARIZED WAVES......Page 167
6.1. Representation of the Fields......Page 168
6.2. Representation of Partially Polarized Waves......Page 172
6.3. Reception of Partially Polarized Waves......Page 182
Problems......Page 184
7. SCATTERING BY DEPOLARIZING TARGETS......Page 187
7.1. Targets......Page 188
7.2. Averaging the Sinclair Matrix......Page 191
7.3. The Kronecker-Product Matrices......Page 192
7.4. Matrices for a Depolarizing Target: Coherent Measurement......Page 195
7.5. Incoherently Measured Target Matrices......Page 196
7.6. Matrix Properties and Relationships......Page 204
7.7. Modified Matrices......Page 207
7.9. Additional Target Information......Page 209
7.10. Target Covariance and Coherency Matrices......Page 210
7.11. A Scattering Matrix with Circular Components......Page 214
7.12. The Graves Power Density Matrix......Page 215
7.13. Measurement Considerations......Page 217
7.14. Degree of Polarization and Polarimetric Entropy......Page 218
7.15. Variance of Power......Page 219
7.16. Summary of Power Equations and Matrix Relationships......Page 220
Problems......Page 222
8.1. Antenna Selection Criteria......Page 225
8.2. Lagrange Multipliers......Page 226
8.3. Maximum Power......Page 227
B. DEPOLARIZING TARGETS......Page 229
8.5. Iterative Procedure for Maximizing Power Contrast......Page 230
8.6. The Backscattering Covariance Matrix......Page 233
8.7. The Bistatic Covariance Matrix......Page 234
8.8. Maximizing Power Contrast by Matrix Decomposition......Page 235
8.9. Optimization with the Graves Matrix......Page 236
References......Page 240
Problems......Page 241
A. CLASSIFICATION CONCEPTS......Page 243
9.1. Representation and Classification of Targets......Page 244
9.2. Bayes Decision Rule......Page 246
9.3. The Neyman–Pearson Decision Rule......Page 249
9.5. Estimation of Parameters from Data......Page 250
9.6. Nonparametric Classification......Page 254
B. CLASSIFICATION BY MATRIX DECOMPOSITION......Page 260
9.7. Coherent Decomposition......Page 261
9.8. Decomposition of Power-Type Matrices......Page 263
9.9. Decomposition of the D Matrix......Page 267
9.11. A Similar Decomposition......Page 273
References......Page 274
Problems......Page 275
APPENDIX A. FADING AND SPECKLE......Page 277
Reference......Page 279
B.1. Probability......Page 281
B.2. Random Variables......Page 291
B.3. Random Vectors......Page 297
B.4. Probability Density Functions in Remote Sensing......Page 305
B.5. Random Processes......Page 306
References......Page 312
APPENDIX C. THE KENNAUGH MATRIX......Page 313
APPENDIX D. BAYES ERROR BOUNDS......Page 317
References......Page 319
INDEX......Page 321