Reliability of Organic Compounds in Microelectronics and Optoelectronics: From Physics-of-Failure to Physics-of-Degradation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book aims to provide a comprehensive reference into the critical subject of failure and degradation in organic materials, used in optoelectronics and microelectronics systems and devices. Readers in different industrial sectors, including microelectronics, automotive, lighting, oil/gas, and petrochemical will benefit from this book. Several case studies and examples are discussed, which readers will find useful to assess and mitigate similar failure cases. More importantly, this book presents methodologies and useful approaches in analyzing a failure and in relating a failure to the reliability of materials and systems.

Author(s): Willem Dirk van Driel, Maryam Yazdan Mehr
Publisher: Springer
Year: 2022

Language: English
Pages: 558
City: Cham

Preface
Personal Acknowledgements
Contents
Chapter 1: Degradation Mechanisms of Silicones
1 Introduction to Silicones
1.1 Polydimethylsiloxane
2 Crosslinking Mechanism
2.1 Crosslinking by Condensation
2.2 Crosslinking by Addition
3 Key Properties
3.1 Thermal Properties
3.2 Mechanical Properties
3.3 Surface Tension
3.4 Dielectric Properties
3.5 Permeability
3.6 Optical Properties
3.7 Optical Siloxane Resin Synthesis
4 Physical Degradation
4.1 Thermal Effect
4.2 Blue Light Absorption: Photo-Thermal and Stokes Shift Effect
5 Chemical Degradation
5.1 Thermal Effect
5.2 Pt Nano Clustering Effect
5.3 Si–Me and Dimethylene Group Scission
5.4 Phenyl Oxidation
5.5 Radical Crosslinking
5.6 Environmental Degradation
References
Chapter 2: Degradation Mechanisms of Aromatic Polycarbonate
1 Introduction
2 Effect of Processing on Polycarbonate Degradation
3 Polycarbonate Stability Under Thermal Oxidative Conditions
4 Polycarbonate Stability Under Photo-Oxidation
5 Polycarbonate Stability Under LED Light and Thermal Conditions
6 Conclusions
References
Chapter 3: EMC Oxidation Under High-Temperature Aging
1 Thermal Aging of Epoxy Molding Compound
2 Characterization of Oxidation Growth During Thermal Aging
2.1 Measurement of Oxidation Layer
2.2 Behavior of Oxidation Growth
2.3 Empirical Model for Oxidation Growth
3 Effect of EMC Oxidation on Thermomechanical Properties
3.1 Study of Partially Oxidized EMC Specimens
3.2 Preparation of Fully Oxidized EMC Specimens
3.3 Experimental Characterization of Thermomechanical Properties
3.3.1 Storage Modulus
3.3.2 Coefficient of Thermal Expansion
4 Effect of EMC Oxidation on Thermomechanical Behavior of Package
4.1 Preparation of Thermally Aged Package Specimens
4.2 Experimental Analysis Using Moiré Interferometry
5 Effect of EMC Oxidation on Reliability of Electronic Components
5.1 Fatigue Failure of Solder Joints
5.2 Modelling of Package Geometry
5.3 Modeling of Material Properties
5.3.1 QFN Package
5.3.2 Calibration Using Moiré Interferometry
5.3.3 Solder and PCB
5.4 Solder Fatigue Analysis
5.4.1 Simulation Settings
5.4.2 Simulation Results
6 Conclusion
References
Chapter 4: Peridynamic Modeling of Thermo-oxidative Degradation in Polymers
1 Introduction
2 Thermal Oxidation
2.1 Diffusion-Reaction Model
2.2 Reaction Model
2.3 Reaction Termination Model
2.4 Oxidation-Induced Chemical Strain and Stress
2.5 Change in Material Properties
3 Bond-Based Peridynamics
3.1 Coupled Deformation and Oxidation
3.2 PD Diffusion-Reaction Equation
3.3 Boundary Conditions
3.3.1 Dirichlet Boundary Condition
3.3.2 Zero Flux Boundary Conditions
3.3.3 Treatment of Corners
4 Numerical Results
4.1 Thermo-Oxidation in PMR-15 Resin Strip
4.2 Thermo-Oxidation in PMR-15 Resin Strip with Cracks
4.3 Thermo-Oxidation in 977–2 Epoxy Resin
4.4 Thermo-Oxidation in 977–2 Epoxy Resin-Copper Bimaterial
5 Conclusions
References
Chapter 5: Molecular Modeling for Reliability Issues
1 Introduction
2 Molecular Modeling Tools
2.1 Quantum Mechanics
2.2 Classic Methods
2.2.1 Classic Molecular Models
2.2.2 Classic Mesoscale Models
2.2.3 General Considerations
3 Mechanical Reliability on the Molecular Level
3.1 Comparative Stress Models and Size or “How Low Can You Go”
3.2 Structure and Architecture
3.3 Molecular-Mesoscale
3.4 Using Static Quantum Mechanics to Understand Adhesion Effects in a Metal Diffusion Barrier
4 Equilibrium Considerations
4.1 Diffusion
4.1.1 Wetting and Surface Diffusion
4.1.2 Diffusion in and Across Layers
5 Chemistry and Miscibility Involved Failure
5.1 Chemical Stability
5.2 Miscibility
6 Final Thoughts
References
Chapter 6: Health Monitoring, Machine Learning, and Digital Twin for LED Degradation Analysis
1 Introduction
2 PHM of LEDs
3 Model-Based Approaches
3.1 An Overview to Model-Based Approach
3.2 Failure Modes, Mechanisms, and Effects Analysis for LEDs
4 Data-Driven Approaches
4.1 An Overview of Selected Statistical Data-Driven Methods
4.1.1 Wiener Process-Based Approach
4.1.2 Gamma Process-Based Approach
4.1.3 Particle Filtering (PF) Approach
4.2 An Overview of Selected Machine Learning Methods for PHM
4.2.1 Supervised Learning Approaches
Artificial Neural Network
K-Nearest Neighbors
Support Vector Machine and Relevance Vector Machine
4.2.2 Unsupervised Learning Approaches
Principal Component Analysis
K-Means Clustering
Self-Organizing Map (SOM)
4.2.3 Semi-supervised Learning Approaches
Expectation Maximization
Hidden Markov Models
5 Fusion Prognostics Approach for Light-Emitting Diodes
6 System-Level Reliability of Light-Emitting Diodes
7 Challenges and Opportunities of Diagnostics and Prognostics Approaches
8 Digital Twin as Emerging LED Lifetime Analysis
9 UV LED Degradation Modeling and Analysis
10 Conclusions
Appendix*
References
Chapter 7: Reliability and Failures in Solid State Lighting Systems
1 Introduction
2 Customer View: Catastrophic vs Degradation Failures
3 From Observation to Malfunctioning
4 From Malfunctioning to Root Cause
5 Degradation Failure: Lumen Decay by Absence of Oxygen
6 Degradation Failure: Color Maintenance
7 Final Remarks
References
Chapter 8: Degradation and Failures of Polymers Used in Light-Emitting Diodes
1 Introduction
2 Optical Materials Used in LED-Based Systems
2.1 Epoxy
2.2 Polycarbonate (BPA-PC)
2.3 Silicone
2.4 Poly Methyl Methacrylate (PMMA)
3 Degradation of Optical Materials
3.1 Yellowing of Encapsulant/Lens
3.2 Crack and Delamination
3.3 Carbonization
4 Color Shifting
5 Harsh Environments
6 Reliability and High Accelerated Testing (HAST)
References
Chapter 9: Degradation and Reliability of Organic Materials in Organic Light-Emitting Diodes (OLEDs)
1 Introduction
1.1 Emission Properties of OLEDs
1.2 OLED Device Structure
1.3 Reliability Research for OLED Lighting Products
2 Experimental and Analytic Methods
2.1 Devices Under Test
2.2 Stress Testing Methods
3 Measurement Methods
3.1 Luminous Flux
3.2 Electrical Properties
4 Data Analysis Methods
4.1 Luminous Flux Maintenance
4.2 Photometric Analysis of 6-Cell Tandem Stack OLED Panels
4.3 Emission Spectra Deconvolution
5 Results
5.1 6-Cell Tandem Stack Panels
5.2 LFM of 6-Cell Tandem Stack OLED Panels
5.3 Chromaticity Maintenance of the 6-Cell Tandem Stack OLEDs
5.4 Electrical Analysis of Neutral White OLED Panels
6 Discussion
6.1 Comparison with Inorganic LEDs
7 Conclusions
References
Chapter 10: Artificial Intelligence and LED Degradation
1 Introduction to Artificial Intelligence
2 Unsupervised Learning Algorithms
2.1 Bayesian Regression
2.2 Bayesian Classifier
2.3 Kalman Filter and Extended Kalman Filter
2.4 LED Applications
3 Supervised Learning and Artificial Neural Networks
References
Chapter 11: Degradation Analysis for Reliability of Optoelectronics
1 Introduction
2 Exponential Decay Modeling
3 Gamma Process-Based Modeling
3.1 Methodology
3.2 Lumen Depreciation Modeling
3.3 CCT Shift Modeling
3.4 Case Study
4 Spectral Power Distribution-Based Modeling
4.1 SPD Modeling
4.2 SPD-Based Failure Analysis
4.3 Case Studies
5 Conclusions
References
Chapter 12: Reliability and Failure of Microelectronic Materials
1 Introduction
2 The Basic Concept and Function of a Semiconductor Package
3 Types of Microelectronic Packages
4 Key Packaging Materials
5 Material Characterization
5.1 Thermomechanical Properties
5.1.1 DMA (Dynamic Mechanical Analyzer)
5.1.2 TMA (Thermomechanical Analysis)
5.1.3 DSC (Differential Scanning Calorimetry)
5.1.4 TGA (Thermogravimetric Analysis)
5.1.5 Other Mechanical Tests
5.2 Chemical Properties
5.3 Moisture-Dependent Properties
5.4 Electrical Properties
6 Reliability and Qualification
6.1 Introduction
6.2 Material Qualification
6.3 Failure Analysis
7 Failure Mechanisms
7.1 Bulk Degradation
7.2 Interfacial Degradation of Interconnects
7.3 Other Failure Mechanisms
8 Final Remarks
References
Chapter 13: Degradation and Remaining Useful Life Prediction of Automotive Electronics
1 Functions of Epoxy-Based Thermosets in Automotive Electronics
2 Environmental Requirements to Epoxy-Based Thermosets
3 Reliability Assessment of Polymer-Based Design Elements
4 The Use of Epoxy-Based Thermosets in Automotive Electronics
4.1 Epoxies Functioning as Electronic Housing
4.1.1 Potting
4.1.2 Transfer Molding
4.1.3 Injection Molding
4.1.4 Polymers to Seal Housing Parts
4.2 Epoxies for Integrated Circuits (IC) Interconnections
4.2.1 Isotropic Conductive Adhesive (ICA) Interconnection for Flip Chips
4.2.2 Nonconductive Adhesive Interconnection for Flip Chips
4.2.3 Anisotropic Conductive Adhesive (ACA) Interconnection
4.2.4 Epoxy-Based Die Attach Adhesive for Silicon Dies with Wire Bonding
4.2.5 Capillary Underfill Dispensing to Protect Soldered or ICA Connected Bumps
5 Simulation-Driven Design
5.1 Virtual Design of Experiments (DoE)
5.1.1 Sensitivity Analysis of ASIC in QFN Housing
5.2 Material Characterization
5.3 Physics of Failure Simulation
5.4 Validation
6 Degradation and Remaining Useful Life Prediction
7 Conclusions
References
Chapter 14: Reliability and Degradation of Power Electronic Materials
1 Introduction to Reliability and Degradation
2 Power Electronic Materials
3 Reliability
3.1 Basic Functions
3.2 Some Important Distribution Families
3.3 Competition of Processes and Mixed Subpopulations
3.4 Bath Tub Curves and Screening
4 Data Analytics
4.1 Censored Data
4.2 Graphical Analysis
4.3 Parameter Estimation
5 Stress-Related Lifetimes
5.1 Power Law
5.2 Arrhenius Law
5.3 Combined Accelerated Aging Factors
6 System Lifetime
6.1 Reparability Considerations
7 Disentangling Combined Distributions
References
Chapter 15: Degradation of Cure-Induced Stress Levels in Micro-electronics
1 Introduction
2 Constitutive Modeling of Cure-Dependent Viscoelastic Properties
2.1 General Form of Cure-Dependent Stress-Strain Relation
2.2 Cure-Dependent Relaxation Moduli
2.3 Equilibrium Moduli (Rubbery Moduli)
2.4 The Effect of Temperature and Conversion on the Relaxation Behavior
3 Experimental Characterization of Cure-Dependent Viscoelastic Properties
3.1 Cure Kinetics and Tg ‐ α Relationship
3.2 Cure-Dependent Shear Modulus
3.2.1 Cure-Dependent Rubbery Shear Moduli
3.2.2 Isothermal Cure Approach
3.2.3 Intermittent Cure Approach
3.3 Cure-Dependent Bulk Modulus
3.4 The Curing Shrinkage Measurement
4 Case Study: Warpage of QFN Packages Induced during the Process
4.1 Experiments
4.2 Finite Element Modeling
4.3 Results and Discussion
5 Conclusions
References
Chapter 16: Manufacturing for Reliability of Panel-Level Fan-out Packages
1 Introduction
2 Process Description
3 Technical Challenges
4 Involved Materials and Main Properties
5 Die Shift
6 Warpage
7 Flow Marks
8 Approaches to Manufacture for Reliability
9 Outlook
References
Chapter 17: Outlook: From Physics of Failure to Physics of Degradation
References
Index