Reinforcement of Polymer Nano-Composites: Theory, Experiments and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Reinforced rubber allows the production of passenger car tires with improved rolling resistance and wet grip. This book provides in-depth coverage of the physics behind elastomer reinforcement, with a particular focus on the modification of polymer properties using active fillers such as carbon black and silica. The authors build a firm theoretical base through a detailed discussion of the physics of polymer chains and matrices before moving on to describe reinforcing fillers and their applications in the improvement of the mechanical properties of high-performance rubber materials. Reinforcement is explored on all relevant length scales, from molecular to macroscopic, using a variety of methods ranging from statistical physics and computer simulations to experimental techniques. Presenting numerous technological applications of reinforcement in rubber such as tire tread compounds, this book is ideal for academic researchers and professionals working in polymer science.

Author(s): T. A. Vilgis, G. Heinrich, M. Klüppel
Edition: 1
Publisher: Cambridge University Press
Year: 2009

Language: English
Pages: 223

Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 11
Acknowledgement......Page 14
1 Introduction......Page 15
2.1 Gaussian chains – heuristic introduction......Page 24
2.2 Gaussian chains – path integrals......Page 26
2.3 Self-interacting chains......Page 29
3.1 Some general remarks......Page 33
3.2 Collective variables......Page 34
3.3 The statistics of tagged chains......Page 40
4.1 Classical theory of gelation......Page 45
4.2 Percolation......Page 48
4.3 Vulcanization......Page 51
5.1 General remarks......Page 54
5.2 The Gaussian network......Page 56
5.3 Entanglements and the tube model: a material law......Page 59
5.3.1 Entanglement sliding......Page 61
5.3.2 Finite extensibility......Page 63
5.3.3 Tube and sliplinks......Page 66
5.4.1 The stress–strain relationship......Page 67
Basic assumptions......Page 69
Applications for non-ideal networks......Page 71
5.4.3 Testing of the model......Page 73
6.2 D-dimensionally connected polymers in a good solvent......Page 78
6.3 D-dimensionally connected polymers between two parallel plates in a good solvent......Page 80
6.4 D-dimensionally connected polymers in a cylindrical pore (good solvent)......Page 82
6.5 Melts of fractals in restricted geometries......Page 85
6.6 Once more the differences......Page 88
7.1 Fillers for the rubber industry......Page 89
7.2.1 Morphology of carbon black aggregates......Page 91
7.2.2 Surface roughness of carbon blacks......Page 98
7.2.3 Energy distribution of carbon black surfaces......Page 106
7.3 Silica......Page 110
8.1 Reminder: Einstein–Smallwood......Page 115
8.2 Rigid filler aggregates with fractal structure......Page 117
8.2.1 Effective medium theory and linear elasticity......Page 120
8.2.2 Screening lengths......Page 123
8.2.3 Reinforcement by fractal aggregates......Page 124
8.3 Core–shell systems......Page 125
8.3.2 Soft core/hard shell......Page 126
8.3.3 Hard core/soft shell......Page 129
9.1 General remarks and scaling......Page 132
9.1.1 Flat surface......Page 133
9.1.2 Generalization for fractal surfaces......Page 134
9.2.1 Variational calculation......Page 135
9.3 Trial Hamiltonian......Page 136
9.3.1 Minimization of the free energy......Page 137
9.3.2 Effective interaction strength......Page 140
9.4 Some further remarks on the interpretation......Page 144
9.4.1 Modeling by random potentials......Page 145
9.4.2 Annealed and quenched disorder......Page 148
9.4.3 Dynamics of localized chains – freezing, glass transition at filler surfaces......Page 149
9.5.1 Langevin dynamics......Page 151
9.5.2 Self-consistent Hartree approximation......Page 153
9.5.3 Equation of motion......Page 156
9.6.1 Anomalous diffusion......Page 158
9.6.2 Center-of-mass freezing......Page 160
9.6.3 Rouse modes freezing and a two mode toy model......Page 161
9.7 Numerical analysis......Page 162
9.7.1 Bifurcation diagram......Page 163
9.8 Contribution to the modulus......Page 165
10.1.1 Flocculation of fillers during heat treatment......Page 167
10.1.2 Kinetics of filler structures under dynamic excitation......Page 170
10.2.1 The Kraus model......Page 175
10.2.2 The viscoelastic model......Page 178
10.2.3 The van der Walle–Tricot–Gerspacher (WTG) model......Page 183
10.2.4 The links–nodes–blobs (LNB) model......Page 185
10.2.5 The model of the variable network density......Page 186
10.2.6 The cluster–cluster aggregation (CCA) model......Page 188
10.3.1 The dynamic flocculation model......Page 196
10.3.2 The Kantor–Webman model of flexible chain aggregates......Page 207
References......Page 210
Index......Page 218