Recent Progress in Conformal Geometry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction. In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrendrian curves, which allows one to define a homology associated to a contact structure and a vector field of its kernel on a three-dimensional manifold. The homology is invariant under deformation of the contact form, and can be read on a sub-Morse complex of the Morse complex of the variational problem built with the periodic orbits of the Reeb vector-field. This book introduces, therefore, a practical tool in the field, and this homology becomes computable.

Author(s): Abbas Bahri, Yongzhong Xu,
Series: ICP Advanced Texts in Mathematics
Edition: 1
Publisher: Imperial College Press - World Scientific
Year: 2007

Language: English
Pages: 524