Recent Advances in PMOS Negative Bias Temperature Instability: Characterization and Modeling of Device Architecture, Material and Process Impact

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers advances in Negative Bias Temperature Instability (NBTI) and will prove useful to researchers and professionals in the semiconductor devices areas. NBTI continues to remain as an important reliability issue for CMOS transistors and circuits. Development of NBTI resilient technology relies on utilizing suitable stress conditions, artifact free measurements and accurate physics-based models for the reliable determination of degradation at end-of-life, as well as understanding the process, material and device architectural impacts. This book discusses: 

  • Ultra-fast measurements and modelling of parametric drift due to NBTI in different transistor architectures: planar bulk and FDSOI p-MOSFETs, p-FinFETs and GAA-SNS p-FETs, with Silicon and Silicon Germanium channels. 
    • BTI Analysis Tool (BAT), a comprehensive physics-based framework, to model the measured time kinetics of parametric drift during and after DC and AC stress, at different stress and recovery biases and temperature, as well as pulse duty cycle and frequency. 
      The Reaction Diffusion (RD) model is used for generated interface traps, Transient Trap Occupancy Model (TTOM) for charge occupancy of the generated interface traps and their contribution, Activated Barrier Double Well Thermionic (ABDWT) model for hole trapping in pre-existing bulk gate insulator traps, and Reaction Diffusion Drift (RDD) model for bulk trap generation in the BAT framework; NBTI parametric drift is due to uncorrelated contributions from the trap generation (interface, bulk) and trapping processes. 
  • Analysis and modelling of Nitrogen incorporation into the gate insulator, Germanium incorporation into the channel, and mechanical stress effects due to changes in the transistor layout or device dimensions; similarities and differences of (100) surface dominated planar and GAA MOSFETs and (110) sidewall dominated FinFETs are analysed.
  • Author(s): Souvik Mahapatra
    Publisher: Springer
    Year: 2021

    Language: English
    Pages: 334
    City: Singapore

    Foreword by Muhammad Ashraful Alam
    Foreword by Stephen M. Ramey
    Preface
    Acknowledgements
    Contents
    About the Editor
    1 Characterization of NBTI Parametric Drift
    1.1 Introduction
    1.2 NBTI Measurement Methods
    1.2.1 Full Sweep MSM Method
    1.2.2 One Point Drop Down (OPDD) MSM Method
    1.2.3 Other Measurement Methods
    1.3 Basic Features of Measured Data
    1.3.1 Static (DC) Stress
    1.3.2 Dynamic (AC) Stress
    1.4 Estimation of EOL Degradation
    1.5 Summary
    References
    2 Device Architecture, Material and Process Dependencies of NBTI Parametric Drift
    2.1 Introduction
    2.2 Incorporation of Nitrogen
    2.3 Si Versus SiGe Channel
    2.4 Impact of Mechanical Strain
    2.5 Variability in Small Area Devices
    2.6 Summary
    References
    3 Physical Mechanism of NBTI Parametric Drift
    3.1 Introduction
    3.2 Evidence of Interface Trap Contribution
    3.2.1 Charge Pumping (CP) Method
    3.2.2 Direct-Current IV (DCIV) Method
    3.2.3 Corrections for Measurement Delay and Bandgap
    3.3 Evidence of Hole Trapping Contribution
    3.3.1 Flicker Noise Measurement
    3.3.2 Impact on Time Kinetics and T Activation
    3.4 Evidence of Bulk Gate Insulator Trap Generation Contribution
    3.5 Summary
    References
    4 BTI Analysis Tool (BAT) Model Framework—Generation of Interface Traps
    4.1 Introduction
    4.2 BTI Analysis Tool (BAT) Framework
    4.3 Reaction Diffusion (RD) Model
    4.3.1 RD Model with Defect-Assisted Dimerization
    4.3.2 Physical Mechanism of Interfacial Defect Dissociation
    4.4 Experimental Validation of RD model
    4.5 Explanation of Process (Ge%, N%) Impact
    4.6 Discussion on RD model
    4.6.1 Nature of H Passivated Defects (Defect Precursors)
    4.6.2 Dissociation of H Passivated Defects
    4.6.3 Model Parameters
    4.7 Summary
    References
    5 BTI Analysis Tool (BAT) Model Framework—Interface Trap Occupancy and Hole Trapping
    5.1 Introduction
    5.2 Interface Trap Generation and Reaction–Diffusion (RD) Model
    5.3 Occupancy of Interface Traps
    5.3.1 Transient Trap Occupancy Model (TTOM)
    5.3.2 Validation of TTOM-Enabled RD model
    5.4 Hole Trapping in Preexisting Defects
    5.4.1 Activated Barrier Double Well Thermionic (ABDWT) Model
    5.4.2 Validation of TTOM-Enabled RD and ABDWT Models
    5.5 Multi-segment Arbitrary DC–AC Stress
    5.6 Summary
    References
    6 BTI Analysis Tool (BAT) Model Framework—Generation of Bulk Traps
    6.1 Introduction
    6.2 Generation of Bulk Gate Insulator Traps
    6.2.1 Reaction Diffusion Drift (RDD) Model
    6.2.2 Validation of TTOM Enabled RD and RDD Models
    6.3 Comparison of FinFET Architectures
    6.4 Estimation of EOL Degradation
    6.5 Determination of Model Parameters
    6.6 Summary
    References
    7 BAT Framework Modeling of Gate First HKMG Si Channel MOSFETs
    7.1 Introduction
    7.2 Device Details and Model Parameters
    7.3 DC Stress Kinetics—Impact of Nitrogen Incorporation
    7.4 DC Stress Kinetics—Impact of Thickness Scaling
    7.5 Recovery Kinetics After DC Stress
    7.6 Impact of Measurement Delay
    7.7 Measurement of Small Area Devices
    7.8 Estimation of EOL Degradation
    7.9 Summary
    References
    8 BAT Framework Modeling of Gate First HKMG Si-Capped SiGe Channel MOSFETs
    8.1 Introduction
    8.2 Device Details and Model Parameters
    8.3 Modeling of Stress Kinetics
    8.4 Modeling of Recovery Kinetics
    8.5 Explanation of Process Dependence
    8.5.1 Impact of Si Cap Thickness
    8.5.2 Impact of SiGe QW Thickness
    8.5.3 Impact of Ge% in SiGe QW
    8.6 Estimation of EOL Degradation
    8.7 Summary
    References
    9 BAT Framework Modeling of Gate First HKMG Si and SiGe Channel FDSOI MOSFETs
    9.1 Introduction
    9.2 Description of Process Splits
    9.3 Modeling of Measured Data, Model Parameters
    9.3.1 Stress and Recovery Kinetics Over Extended T Range
    9.3.2 Impact of Ge% and N%
    9.3.3 Impact of Layout (Channel to STI/active Edge Spacing)
    9.4 Explanation of Process Dependence
    9.4.1 Impact of Ge% and N%
    9.4.2 Impact of Layout
    9.5 Estimation of EOL Degradation
    9.6 Summary
    References
    10 BAT Framework Modeling of RMG HKMG SOI FinFETs
    10.1 Introduction
    10.2 Device Details and Model Parameters
    10.3 DC Stress Kinetics, Voltage, and Temperature Dependence
    10.4 Recovery Kinetics After DC Stress
    10.5 AC Stress and Recovery Kinetics
    10.6 Variation in Few-Fin FinFETs
    10.7 Estimation of EOL Degradation
    10.8 Summary
    References
    11 BAT Framework Modeling of RMG HKMG Si and SiGe Channel FinFETs
    11.1 Introduction
    11.2 Device Details and Model Parameters
    11.3 Stress and Recovery Time Kinetics—DC Stress
    11.4 Stress and Recovery Time Kinetics—AC Stress
    11.5 Voltage and Temperature Dependence—DC Stress
    11.6 Voltage and Temperature Dependence—AC Stress
    11.7 Estimation of EOL Degradation
    11.8 Summary
    References
    12 BAT Framework Modeling of RMG HKMG GAA-SNS FETs
    12.1 Introduction
    12.2 Device Details and Model Parameters
    12.3 Description of Model Subcomponents
    12.4 Stress and Recovery Time Kinetics
    12.5 Voltage and Temperature Dependence
    12.6 Estimation of EOL Degradation
    12.7 Summary
    References
    13 BAT Framework Modeling of Dimension Scaling in FinFETs and GAA-SNS FETs
    13.1 Introduction
    13.2 Device Details and Model Parameters
    13.3 Fin Length Scaling in SOI FinFETs
    13.4 Fin Length and Width Scaling in SiGe FinFETs
    13.5 Sheet Length and Width Scaling in GAA-SNS FETs
    13.6 Explanation of Fin and Sheet Dimension Scaling
    13.7 Summary
    References
    14 BAT Framework Modeling of AC NBTI: Stress Mode, Duty Cycle and Frequency
    14.1 Introduction
    14.2 Device Details and Model Parameters
    14.3 Impact of AC Stress Mode, PDC, VGLOW, and Frequency
    14.4 Mode-B AC Stress, Impact of PDC and Frequency
    14.5 Mode-B AC Stress, Conditions for Frequency Dependence
    14.6 Summary
    References
    Index