Random Walks, Trees and Extensions of Riordan Group Techniques

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Naiomi Tuere Cameron
Series: PhD thesis at Howard University
Year: 2002

Language: English

D issertation A pproval S h e e t ............................................................................
D e d ic a tio n .................................................................................................................
A c k n o w le d g m e n ts ................................................................................................
A b s tr a c t ....................................................................................................................
L ist o f F ig u r e s .......................................................................................................
C hapter 1. In tro d u c tio n ...................................................................................
1.1 Basic Definitions and O ve rvie w ..................................................................
1.1.1 Definitions .............................................................................................
1.1.2 Overview .............................................................................................
1.2 The Catalan Numbers: Some Interpretations and Related Results . .
1.2.1 Combinatorial Interpretations of the Catalan Numbers . . . .
1.2.2 Statistics Related to the Catalan N um bers..................................
1.2.3 Functions Related to C { z ) ...............................................................
1.3 The Ternary numbers and Generalized Dyck P a th s ..............................
1.3.1 Combinatorial Interpretations of the Ternary Numbers . . . .
1.3.2 Generalized i-Dyck paths ...................................................................
viii
ii
iii
iv
vi
x
1
1
1
6
8
8
10
10
12
12
17
1.4 The Riordan G roup ............................................................................................. 17
C hapter 2. Analogues o f Catalan P ro p e rtie s ............................................ 24
2.1 T(z) is to N(z) as C(z) is to B (z ) ................................................................... 24
2.2 The Chung-Feller Theorem for f-Dyck p a th s .............................................. 26
2.3 The Motzkin Analogue ...................................................................................... 29
2.3.1 The Balls on the Lawn P roblem .......................................................... 30
2.3.2 The Euler Transform .............................................................................. 33
2.4 The Fine A nalogue ............................................................................................. 35
C hapter 3. R eturns and A re a .............................. 38
3.1 Expected Number of R e tu rn s ......................................................................... 38
3.1.1 Dyck P a th s ............................................................................................... 39
3.1.2 Ternary P aths ........................................................................................... 39
3.2 Techniques for Finding Area Under Paths ................................................... 43
3.2.1 Dyck P a th s ............................................................................................... 44
3.2.2 Ternary P aths ........................................................................................... 48
C hapter 4. Conclusions and Open Q u e s tio n s ............................................ 53
4.1 Summary and Work to be D o n e ...................................................................... 53
4.2 More Open Questions .......................................................................................... 54
4.2.1 Elements of Pseudo Order 2 ................................................................. 54
4.2.2 Determinant Sequences ........................................................................... 57
4.2.3 Narayana Analogue .................................................................................. 62