R Deep Learning Projects

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting. What You Will Learn • Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec • Apply neural networks to perform handwritten digit recognition using MXNet • Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification • Implement credit card fraud detection with Autoencoders • Master reconstructing images using variational autoencoders • Wade through sentiment analysis from movie reviews • Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks • Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reduction

Author(s): Yuxi (Hayden) Liu, Pablo Maldonado
Publisher: Packt Publishing
Year: 2018

Language: English
Commentary: watermarked pages
Pages: 258