Quaternion Involutions

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Computers and Mathematics with Applications, 53, (1), 2007, - 8 c.
An involution is usually defined as a mapping that is its own inverse. In this paper, we study quaternion involutions that have the additional properties of distribution over addition and multiplication. We review formal axioms for such involutions, and we show that the quaternions have an infinite number of involutions. We show that the conjugate of a quaternion may be expressed using three mutually perpendicular involutions. We also show that any set of three mutually perpendicular quaternion involutions is closed under composition. Finally, we show that projection of a vector or quaternion can be expressed concisely using involutions.

Author(s): Ell T.A., Sangwine S.J.

Language: English
Commentary: 1687333
Tags: Математика;Комплексное исчисление