Quantum Triangulations: Moduli Spaces, Strings, and Quantum Computing

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturallycalls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment.

The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest.

This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Author(s): Mauro Carfora, Annalisa Marzuoli (auth.)
Series: Lecture Notes in Physics 845
Edition: 1
Publisher: Springer-Verlag Berlin Heidelberg
Year: 2012

Language: English
Pages: 284
City: Berlin ; New York
Tags: Physics, general;Mathematical Physics;Quantum Physics;Manifolds and Cell Complexes (incl. Diff.Topology);Classical and Quantum Gravitation, Relativity Theory;Mathematical Applications in the Physical Sciences

Front Matter....Pages i-xvii
Triangulated Surfaces and Polyhedral Structures....Pages 1-54
Singular Euclidean Structures and Riemann Surfaces....Pages 55-81
Polyhedral Surfaces and the Weil–Petersson Form....Pages 83-114
The Quantum Geometry of Polyhedral Surfaces....Pages 115-174
State Sum Models and Observables....Pages 175-216
Combinatorial Framework for Topological Quantum Computing....Pages 217-254
Back Matter....Pages 255-284