Protein Phosphatases and Stress Management in Plants: Functional Genomic Perspective

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The regulation of the phosphorylation/dephosphorylation process, resulting in “cellular switches” that monitor normal plant physiology, growth and development, has immense potential in crop systems. With much of the information in the nascent stages, coming largely from Arabidopsis and rice particularly, the use of cell biology, genetic screens, biochemical approaches aided by an omics approach should help unravel the detail functional information available about signaling pathways in plants. The regulation could be exploited to develop crop varieties better equipped to handle changing environments and enhance agricultural productivity. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving phosphatases, one gene family or multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses. Especially abiotic stresses, which are the major cause of crop loss throughout the world without losing crop yield and productivity. This book incorporates the contributions from leading plant biologists in the field of stress-mediated dephosphorylation by phosphatases as an important task to elucidate the aspects of stress signaling by functional genomic approaches.

Author(s): Girdhar Pandey
Publisher: Springer
Year: 2020

Language: English
Pages: 387
City: Cham

Preface
Contents
Author’s Biography
Chapter 1: SLP1 and SLP2: Ancient Chloroplast and Mitochondrial Protein Phosphatases
1.1 Introduction
1.2 Protein Phosphatases in Eukaryotes
1.3 Chloroplast and Mitochondrial Protein Phosphorylation
1.4 Discovery and Bioinformatics of SLP1 and SLP2
1.5 SLP1 Is a Chloroplast-Localized Serine/Threonine Protein Phosphatase
1.6 SLP2 Is a Mitochondrial Intermembrane Space Serine/Threonine Protein Phosphatase
1.7 Mia40 as a Redox Regulator
1.8 MS-Based Substrate Discovery: The Future of Protein Phosphatases?
1.9 Conclusions
References
Chapter 2: Phosphoprotein Phosphatase Function of Secreted Purple Acid Phosphatases
2.1 Introduction
2.1.1 PAPs Play a Central Role in Plant Pi Acquisition and Use Efficiency
2.2 Extracellular Protein Phosphorylation Networks of Animals and Plants: The Neglected PTM
2.2.1 Animals
2.2.2 Plants
2.3 Phosphoprotein Phosphatase Function of Secreted PAPs
2.3.1 Animals
2.3.2 Plants
2.4 Plant Haloacid Dehalogenase-Like APases May Function as Cytoplasmic Phosphoprotein Phosphatases
2.5 Concluding Remarks
References
Chapter 3: Purple Acid Phosphatases (PAPs): Molecular Regulation and Diverse Physiological Roles in Plants
3.1 Introduction
3.2 Structure and Classification of PAPs
3.3 PAPs Exist as a Multigene Family
3.4 Plant PAPs Are Nonspecific Phosphatases
3.5 Regulation of Purple Acid Phosphatases in Plants
3.6 Diverse Functions of Plant PAPs
3.6.1 Organic P Utilization
3.6.2 Seed Germination and Abiotic/Biotic Stress Tolerance
3.6.3 Root Architecture Modulation
3.6.4 Nodule Formation and Arbuscular Mycorrhizal (AM) Symbiosis
3.6.5 Regulation of Flowering
3.6.6 Seed Development
3.7 Future Perspectives
References
Chapter 4: Role of Serine/Threonine Phosphatase PP2A Class and Its Regulators in Salinity Stress Tolerance in Plants
4.1 Introduction
4.2 Overview of Serine-Threonine Phosphatases in Plants
4.2.1 Classification of Protein Phosphatases
4.2.2 Global Functions of PP2A: Diverse Functional Spectrum
4.2.3 Salinity Stress Sensor Kinases in Plants
4.2.4 Role of PP2A Holoenzymes in Plants During Salt Stress
4.3 Concluding Remarks
References
Chapter 5: Type 2C Protein Phosphatases in Plant Signaling Pathways under Abiotic Stress
5.1 Introduction
5.2 Regulatory Targets of PP2Cs in Plant Stress Signaling Pathways
5.2.1 Core ABA Signaling Module
5.2.2 Chromatin Remodeling Complex
5.2.3 MAPK Cascades
5.2.4 Other Targets
5.3 Current Studies on PP2Cs in Plant under Abiotic Stress
5.3.1 Clade A
5.3.2 Clade B
5.3.3 Other Clades
5.4 Conclusion
References
Chapter 6: Plant Protein Phosphatase 2C: Critical Negative Regulator of ABA Signaling
6.1 Introduction
6.2 ABA Signaling: Major Stress Signaling Pathway of Plants
6.2.1 ABA Receptors: Site for ABA Perception
6.2.2 Protein Kinases: Positive Regulator of ABA Signaling
6.2.3 Protein Phosphatase 2C: Negative Regulator of ABA Signaling
6.2.4 Classification and Evolution of Protein Phosphatases in Plants
6.2.5 PP2Cs as a Fine Modulator of ABA Signaling
6.2.6 Clade A PP2Cs and ABA Signaling
6.2.7 ABA Insensitive 1 and 2 (ABI1 and ABI2)
6.2.8 ABA Hypersensitive Germination 3 (AHG3/AtPP2CA)
6.2.9 Hypersensitive to ABA (HAB1)
6.3 Role of PP2Cs in Various Signaling Pathways in Plants
6.3.1 PP2Cs in Developmental Signaling
6.3.2 PP2Cs in Abiotic Stress Signaling
6.3.3 PP2Cs in Biotic Stress Signaling
6.4 Conclusions and Future Perspectives
References
Chapter 7: Protein Phosphatases at the Interface of Sugar and Hormone Signaling Pathways to Balance Growth and Stress Responses in Plants
7.1 Introduction
7.2 Structure, Subunit Composition, and General Functions of Protein Phosphatases
7.2.1 PP2A
7.2.2 PP2C
7.3 Sugar as a Signaling Molecule
7.4 Crosstalk Between Protein Phosphatases and Sugar Signaling
7.5 Evolutionary Dynamics of Nutrient and Energy Sensing Among Eukaryotes
7.6 Protein Phosphatases and Interaction with Sugar and ABA in Managing Stress
7.7 Conclusions and Future Perspective
References
Chapter 8: Protein Phosphatases in Guard Cells: Key Role in Stomatal Closure and Opening
8.1 Introduction
8.1.1 Importance of Stomata
8.1.2 Signals That Induce Closure/Opening
8.1.3 Events During Stomatal Closure by ABA
8.2 Signal Transduction in Guard Cells
8.2.1 Signal Perception and Transmission
8.2.2 ABA-Receptor-PP2C Complex Formation
8.2.3 ABA Analogues Used as Interacting Partners of PP2C/ ABI1
8.3 Protein Phosphatases (PPs)
8.3.1 Different Forms of PPs
8.3.2 PP2C: Essential for Stomatal Closure
8.3.3 PP2A: Key Component of Stomatal Closure
8.3.4 PP1: Promotes Stomatal Opening
8.4 Interacting Partners of PP2C
8.4.1 ABA Receptors: PYR/PYL/RCAR Proteins
8.4.2 Protein Kinases Involved in ABA-Mediated Signaling in Guard Cells
8.4.3 Molecular Interactions of PP2C with PYLs and Kinases
8.4.4 Arabidopsis Mutants: Versatile Tools to Study the Role of PP2C and PP1 in Stomatal Function
8.5 Concluding Remarks
References
Chapter 9: Deciphering the Roles of Protein Phosphatases in the Regulation of Salt-Induced Signaling Responses in Plants
9.1 Introduction
9.2 Phosphatases: A Brief Outlook
9.2.1 PP-1
9.2.2 PP-2
9.2.3 PP-4 to PP-7
9.2.4 Protein Tyrosine Phosphatases (PTPs)
9.2.5 Phosphatases Which Regulate Inositol Signaling
9.3 The Roles of Phosphatases in Regulating Salt Stress in Plants
9.4 Conclusion
9.5 Future Perspectives
References
Chapter 10: Phosphatases: The Critical Regulator of Abiotic Stress Tolerance in Plants
10.1 Introduction
10.2 Major Protein Phosphatase Gene Families
10.2.1 Protein Phosphatase P (PPP)
10.2.1.1 Protein Phosphatase 1
10.2.1.2 Protein Phosphatase 2A
10.2.1.3 Protein Phosphatase 2B
10.2.1.4 PP4, PP5, PP6, and PP7
10.2.2 Protein Phosphatase M (PPM)
10.2.3 Protein Tyrosine Phosphatases (PTP)
10.3 Role of Phosphatases in Abiotic Stress Signaling in Crop Plants
10.3.1 Salt Stress
10.3.2 Potassium (K+) Deficiency
10.3.3 ABA and Stomatal Regulation
10.3.4 Other Abiotic Stresses
10.4 Conclusions
References
Chapter 11: Role of Protein Phosphatases in Signaling, Potassium Transport, and Abiotic Stress Responses
11.1 Introduction
11.2 Protein Phosphatases (PPs): Their Classes and Structure
11.3 The CBL-CIPK Family, Plants Modified Version of PP2B Family Phosphatases
11.4 Phosphatases and Signal Transduction
11.4.1 Phosphatases and Abscisic Acid (ABA) Signaling
11.4.2 Protein Phosphatases in Defense Signaling and the Regulation of Primary and Secondary Metabolism and the Regulation of Mitogen-Activated Protein Kinases (MAPKs)
11.4.3 Role of Auxin and Brassinosteroid and Protein Phosphatases
11.5 Conditions that Necessitate K+ Uptake Systems (AKT1, HAK5, KUP7) in Plants and K+ Deficiency Sensing
11.5.1 Plant Non-voltage-Gated K+ Channels (TPK /KCO) and KEA K+ Transporters
11.5.2 K+ Deprivation and Calcium Signaling
11.5.3 Regulation of Arabidopsis K+ Transporter 1 (AKT1) K+ Selective Channel
11.5.4 Regulation of Arabidopsis K+ Transporter 2 (AKT2) K+ Selective Channels
11.5.5 Role of Other CBL-CIPK Modules in Ion Homeostasis Pathways
11.5.6 The GORK and SKOR Channels in K+ Homeostasis and Other Functions in Plant Cell
11.5.7 The Regulation of AtHAK5
11.5.8 K+ Uptake Regulation by a Novel CIPK and PP2C Pair
11.6 Ser/Thr Protein Phosphatases in Stress Adaptation
11.6.1 Protein Phosphatase Expression Profile Under Stress Conditions
11.6.2 Phosphatases Are Involved in Modulating Kinases During Salt Stress
11.6.3 Phosphatases in Regulating Guard Cell: The Best-Characterized ABA Signaling Pathway
11.7 Conclusions
References
Chapter 12: Protein Phosphatases in N Response and NUE in Crops
12.1 Introduction
12.2 Phosphatases in N Uptake and Primary Nitrate Response
12.3 PP2Cs Are Negative Regulators of ABA Signaling in NO3− Sensing
12.4 Phosphatases: Key Players in Carbon and Nitrogen Balance
12.5 PP2A-TOR in Regulation of Nitrate Metabolism
12.6 Protein Phosphatases: Fine-Tuning of Nitrate Reductase
12.7 Phosphatases Identified in N Response/NUE
12.8 Conclusions and Future Prospects
References
Chapter 13: Protein Phosphatases of Cereals and Millets: Identification, Structural Organization, and Their Involvement in the Regulation of Abiotic Stresses
13.1 Introduction
13.2 Ser/Thr Phosphatases
13.2.1 Protein Phosphatase 1 (PP1)
13.2.2 Protein Phosphatase 2A (PP2A)
13.2.3 Protein Phosphatase 2B (PP2B)/Calcineurin
13.2.4 Protein Phosphatase 2C (PP2C)
13.3 Protein Tyrosine (Tyr) Phosphatase
13.4 Global Identification of Protein Phosphatase in Cereals and Millets
13.5 Expression Pattern of Protein Phosphatase in Cereals
13.6 Role of Protein Phosphatases in Abiotic Stress Signaling
13.7 Concluding Remarks
References
Chapter 14: Interplay of Protein Phosphatases with Cytoskeleton Signaling in Response to Stress Factors in Plants
14.1 Introduction
14.2 The Role of Plant Protein Phosphatases in Stress
14.3 Dephosphorylation of Serine and Threonine Residues in Plant Stress Response
14.4 Dephosphorylation of Tyrosine Residues and Its Role in Plant Stress Response
14.5 The Role of Protein Phosphatases in Cytoskeleton Regulation
14.6 Conclusion
References
Chapter 15: Protein Phosphatase Mediated Responses in Plant Host-Pathogen Interactions
15.1 Prologue
15.2 Protein Phosphatases in Plant
15.2.1 Types, Key Features
15.2.2 Functional Attributes
15.3 Response of Plant Protein Phosphatases (PPs) Towards Varied Pathogens
15.3.1 Plant PPs Responding Towards Bacterial Pathogens
15.3.2 Plant PPs Responding Towards Fungal Pathogens
15.3.3 Plant PPs Responding Towards Other Known Pathogens
15.4 Pathogenic Protein Phosphatases Involved in Virulence
15.4.1 Examples of Bacterial PPs Required for Virulence
15.4.2 Examples of Fungal PPs Required for Virulence
15.5 Plant Protein Phosphatases as Targets of Pathogen Maneuvering
15.6 Conclusion
References
Chapter 16: Role of Dual Specificity Phosphatase in Stress and Starch Metabolism
16.1 Introduction
16.2 Classification of Protein Phosphatases
16.3 Dual Specificity Phosphatases
16.3.1 Discovery and Structure of Dual Specificity Phosphatase
16.3.2 Catalytic Mechanism
16.4 Roles of Dual Specificity Phosphatase
16.4.1 Roles of Dual Specificity Phosphatases in Plants
16.4.1.1 Role in Starch Metabolism
16.4.1.2 Role in Reactive Oxygen Species Management and Abiotic and Biotic Stresses
Role in Reactive Oxygen Species Management
Abiotic Stress
Biotic Stress
16.4.2 Roles of Dual Specificity Phosphatases in Animals
16.5 Conclusions and Future Prospects
References
Chapter 17: Protein Tyrosine Phosphatases: Implications in the Regulation of Stress Responses in Plants
17.1 Introduction: Tyrosine Phosphorylation Machinery in Plants
17.2 Protein Tyrosine Phosphatase: Structure and Catalysis
17.3 Redox Signaling
17.4 MAPK Signaling
17.5 Hormone Signaling Pathways
17.5.1 Abscisic Acid (ABA) Signaling
17.5.2 Auxin Signaling
17.5.3 Brassinosteroid Signaling
17.6 Developmental Pathways
17.7 Abiotic Stress Tolerance
17.8 Biotic Responses
17.9 Abiotic Stress
17.10 Conclusion and Future Perspective
References
Index