Propulsion Systems for Hybrid Vehicles

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Worldwide the automotive industry is challenged to make dramatic improvements in vehicle fuel economy, some already legislated and in some cases by new regulations. In Europe there are CO2 emissions penalties prorated by the degree at which vehicles miss mandated CO2 levels. In the U.S., vehicle fuel economy targets first set by the U.S. Congress in 2007 for 20% fuel economy improvement by 2020 are now being accelerated by the Obama administration to an overall passenger car plus light truck mandate of 35.5mpg by 2016. Taking effect in 2012 the new rules set more aggressive fuel economy measures that will require making significant gains in engine and driveline efficiency, better performance cabin climate control and the introduction of electric hybridization. This 2nd edition of Propulsion Systems for Hybrid Vehicles addresses the electrification innovations that will be required ranging from low end brake energy recuperators, idle-stop systems, mild hybrids on to strong hybrids of the power split architecture in both single mode and two mode and introducing new topics in plug-in hybrid and battery electrics.

Author(s): John M. Miller
Series: IET Renewable Energy Series 7
Edition: 2nd
Publisher: The Institution of Engineering and Technology
Year: 2010

Language: English
Pages: xiv+594
Tags: Транспорт;Автомобильная и тракторная техника;Автомобили с электрическим и гибридным приводом;

Propulsion Systems for Hybrid Vehicles, 2nd Edition......Page 4
Contents......Page 8
Preface......Page 14
1 Hybrid vehicles......Page 16
1.1 Electric engine hybrids 2010......Page 26
1.2 Limits of engine-only actions......Page 27
1.3 Vehicle electrification and more electric vehicle......Page 30
1.4.1 Partnership for new generation of vehicle goals......Page 33
1.4.2 Engine downsizing......Page 34
1.4.3 Drive cycle characteristics......Page 37
1.4.4 Hybrid vehicle performance targets......Page 41
1.4.5 Basic vehicle dynamics......Page 42
1.5.1 Components of road load......Page 47
1.5.2 Friction and wheel slip......Page 53
1.6 Predicting fuel economy......Page 56
1.6.2 Brake specific fuel consumption......Page 57
1.6.3 Fuel economy and consumption conversions......Page 58
1.7 Internal combustion engines: A primer......Page 60
1.7.1 What is brake mean effective pressure (BMEP)?......Page 62
1.7.2 BSFC sensitivity to BMEP......Page 64
1.7.3 ICE basics: Fuel consumption mapping......Page 66
1.7.4 Emissions regulations......Page 67
1.8.1 The connected car, V2G......Page 71
1.8.2 Grid connected HEV20 and HEV60......Page 74
1.8.3 Charge sustaining and charge depleting......Page 77
1.9 Exercises......Page 79
References......Page 80
2 Hybrid architectures......Page 82
2.1.1 Locomotive drives......Page 86
2.1.2 Series–parallel switching......Page 89
2.1.3 Load tracking architecture......Page 91
2.2 Pre-transmission parallel configurations......Page 92
2.2.1 Energy recuperator systems......Page 94
2.2.2 Micro hybrid......Page 95
2.2.3 Mild hybrid......Page 96
2.2.4 Power assist......Page 99
2.2.5 Dual mode......Page 100
2.3 Pre-transmission combined configurations......Page 101
2.3.1 Power split......Page 103
2.3.2 Power split with shift......Page 108
2.3.3 Continuously variable transmission derived......Page 111
2.3.4 Integrated hybrid assist transmission......Page 112
2.4 Post-transmission parallel configurations......Page 115
2.4.1 Post-transmission hybrid......Page 116
2.4.2 Wheel motor hybrid......Page 117
2.5.1 Launch assist......Page 119
2.5.2 Hydraulic–electric post-transmission......Page 120
2.5.3 Very high voltage electric drives......Page 121
2.6.1 Texas A&M University transmotor......Page 122
2.6.2 Petrol electric drivetrain......Page 123
2.6.3 Swiss Federal Institute flywheel concept......Page 124
2.7.1 Catenary powered vehicles with ultra-capacitors......Page 125
2.7.2 Catenary powered vehicles with wayside ultra-capacitors......Page 126
2.8 Electric four wheel drive......Page 128
2.8.1 The E4 system......Page 129
2.9 Exercises......Page 130
References......Page 132
3 Hybrid power plant specifications......Page 134
3.1 Grade and cruise targets......Page 139
3.1.2 Wide open throttle......Page 142
3.2.2 Lane change......Page 143
3.3.1 Series RBS......Page 144
3.3.3 RBS interaction with ABS......Page 148
3.3.4 RBS interaction with IVD/VSC/ESP......Page 149
3.4.1 Types of drive cycles......Page 150
3.4.2 Electric vehicle and regenerative electric vehicle cycles for PHEVs......Page 151
3.4.3 Average speed and impact on fuel economy......Page 153
3.4.5 Wide open throttle launch......Page 154
3.5.2 Range and performance......Page 155
3.6.2 Electrical burden......Page 156
3.6.4 Neutral idle......Page 157
References......Page 158
4 Sizing the drive system......Page 160
4.1 Matching the electric drive and ice......Page 162
4.1.2 Gear step selection......Page 164
4.1.3 Automatic transmission architectures......Page 166
4.1.3.1 Simpson type......Page 167
4.1.3.3 Lepelletier type......Page 169
4.2 Sizing the propulsion motor......Page 170
4.2.1 Step 1......Page 173
4.2.2 Step 2......Page 174
4.2.3 Step 3......Page 177
4.2.4 Torque and power......Page 179
4.2.5 Constant power speed ratio (CPSR)......Page 183
4.2.6 Machine sizing......Page 185
4.3 Sizing the power electronics......Page 188
4.3.1 Switch technology selection......Page 190
4.3.2 kVA/kW and power factor......Page 191
4.3.3 Ripple capacitor design......Page 195
4.3.4 Switching frequency and PWM......Page 198
4.4 Selecting the energy storage technology......Page 199
4.4.1 Lead–acid technology......Page 209
4.4.3 Lithium ion......Page 211
4.4.5 Fuel cell......Page 214
4.4.6 Ultra-capacitor......Page 219
4.5 Electrical overlay harness......Page 223
4.5.1 Cable requirements......Page 224
4.5.2 Inverter bus bars......Page 227
4.5.4 Power distribution centres......Page 230
4.6 Communications......Page 231
4.6.1 Communication protocol: CAN......Page 234
4.6.2 Power and data networks......Page 235
4.6.3 Future communications: TTCAN......Page 237
4.6.4 Future communications: FlexRay......Page 238
4.6.5 Competing future communications protocols......Page 241
4.6.6 Diagnostic test codes (DTC)......Page 242
4.7.1 Steering systems......Page 243
4.7.2 Braking systems......Page 244
4.7.4 Thermal management......Page 245
4.7.5 Human–machine interface......Page 248
4.8.1 Cost analysis......Page 249
4.8.2 Weight tally......Page 251
4.9 Exercises......Page 252
References......Page 253
5.1 Permanent magnets......Page 258
5.1.1 Permanent magnets: A primer......Page 259
5.1.2 What happened to Alnico?......Page 262
5.1.3 Rare earth permanent magnets......Page 263
5.2 Brushless machines......Page 267
5.2.1 Brushless dc......Page 271
5.2.2 Brushless ac......Page 276
5.2.3 Design essentials of the SPM......Page 280
5.2.4 Dual mode inverter......Page 289
5.3 Interior permanent magnet......Page 292
5.3.1 Buried magnet......Page 293
5.3.2 Flux squeeze......Page 297
5.3.3 Mechanical field weakening......Page 302
5.3.4 Multilayer designs......Page 304
5.4.1 Classical induction......Page 305
5.4.2 Winding reconfiguration......Page 308
5.4.3 Pole changing......Page 309
5.4.3.1 Hunt winding......Page 310
5.4.3.2 Electronic pole change......Page 311
5.4.3.3 Pole–phase modulation......Page 313
5.4.3.4 Pole changing PM......Page 319
5.5 Variable reluctance machine......Page 321
5.5.1 Switched reluctance......Page 322
5.5.2 Synchronous reluctance......Page 326
5.6.1 Dynamic performance comparisons......Page 328
5.6.2 Comparisons for electric vehicles......Page 330
5.6.3 Comparisons for hybrid vehicles......Page 331
5.7 Exercises......Page 334
References......Page 335
6 Power electronics for ac drives......Page 340
6.1 Semiconductor device technologies......Page 341
6.1.1 Trends in power semiconductors......Page 342
6.1.2 Wide bandgap devices......Page 343
6.2 Essentials of pulse width modulation......Page 345
6.3 Resonant pulse modulation......Page 350
6.4 Space vector PWM......Page 352
6.5 Multilevel inverters......Page 361
6.6 Comparison of PWM techniques......Page 363
6.7 dc/dc converters......Page 364
6.8 Thermal design......Page 366
6.9 Reliability considerations......Page 371
6.10 Sensors for current regulators......Page 374
6.11 Interleaved PWM for minimum ripple......Page 376
6.12 Exercises......Page 378
References......Page 380
7 Drive system control......Page 382
7.1 Essentials of field oriented control......Page 383
7.2 Dynamics of field oriented control......Page 388
7.3 Sensorless control......Page 394
7.4 Efficiency optimization......Page 399
7.5 Direct torque control......Page 403
References......Page 406
8.1 Traction motor......Page 410
8.1.1 Core losses......Page 413
8.1.2 Copper losses and skin effects......Page 418
8.2.1 Conduction......Page 421
8.2.2 Switching......Page 423
8.2.3 Reverse recovery......Page 424
8.3 Distribution system......Page 425
8.5 Efficiency mapping......Page 427
8.6 Exercises......Page 431
References......Page 432
9 Hybrid vehicle characterization......Page 434
9.1 City cycle......Page 442
9.2 Highway cycle......Page 443
9.3 Combined cycle......Page 444
9.4 European NEDC......Page 445
9.5 Japan 10–15 mode......Page 447
9.6 Regulated cycle for hybrids......Page 448
Exercises......Page 450
References......Page 453
10 Energy storage technologies......Page 454
10.1 Battery systems......Page 456
10.1.1 Lead–acid......Page 462
10.1.2 Nickel-metal hydride......Page 464
10.1.3 Lithium ion......Page 469
10.2 Capacitor systems......Page 476
10.2.1 Symmetrical ultra-capacitors......Page 481
10.2.2 Asymmetrical ultra-capacitors......Page 485
10.2.3 Ultra-capacitors combined with batteries......Page 488
10.2.4 Hybridized battery example......Page 496
10.2.5 Ultra-capacitor cell balancing......Page 497
10.2.5.1 Dissipative cell equalization......Page 499
10.2.5.2 Non-dissipative cell equalization......Page 500
10.2.5.3 Electrochemical double layer capacitor specification and test......Page 503
10.3 Hydrogen storage......Page 508
10.3.1 Metal hydride......Page 510
10.4 Flywheel systems......Page 511
10.6.1 Battery model......Page 514
10.6.2 Fuel cell model......Page 519
10.6.3 Ultra-capacitor model......Page 522
10.7 Exercises......Page 531
References......Page 534
11 Hybrid vehicle test and validation......Page 538
11.1 Vehicle coast down procedure......Page 540
11.2 Sports utility vehicle test......Page 542
11.3 Sports utility vehicle plus trailer test......Page 544
11.4 Class-8 tractor test......Page 547
11.5 Class-8 tractor plus trailer test......Page 550
11.6 Exercises......Page 554
References......Page 556
12 Automated electrified transportation......Page 558
12.1 Personal rapid transit......Page 561
12.2 Automated highway system......Page 562
12.3 Non-contacting power transfer......Page 564
12.3.1 Inductive coupling technology......Page 565
12.3.2 Radiated near-field power transfer......Page 567
12.4 Transporting cargo......Page 568
References......Page 576
Appendix A......Page 578
References......Page 580
Index......Page 582