Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. This book provides a rapid route for graduate students and researchers to contemplate the frontiers of contemporary research in this classic subject. The authors include exercises and historical and cultural comments relating the basic ideas to a broader context.

Author(s): V. Ovsienko, S. Tabachnikov
Series: Cambridge Tracts in Mathematics
Publisher: Cambridge University Press
Year: 2004

Language: English
Pages: 262

Cover......Page 1
CAMBRIDGE TRACTS IN MATHEMATICS 165......Page 2
About......Page 3
Projective Differential Geometry Old and New: Fromthe Schwarzian Derivative to the Cohomology of Diffeomorphism Groups......Page 4
Copyright - ISBN: 0521831865......Page 5
Contents......Page 6
Preface: why projective?......Page 10
1.1 Projective space and projective duality......Page 14
1.2 Discrete invariants and configurations......Page 18
1.3 Introducing the Schwarzian derivative......Page 21
1.4 A further example of differential invariants: projective curvature......Page 26
1.5 The Schwarzian derivative as a cocycle of Diff(RP^1)......Page 31
1.6 Virasoro algebra: the coadjoint representation......Page 34
2.1 Invariant differential operators on RP^1......Page 39
2.2 Curves in RPn and linear differential operators......Page 42
2.3 Homotopy classes of non-degenerate curves......Page 48
2.4 Two differential invariants of curves: projective curvature and cubic form......Page 53
2.5 Projectively equivariant symbol calculus......Page 55
3 The algebra of the projective line and cohomology of Diff(S^1)......Page 60
3.1 Transvectants......Page 61
3.2 First cohomology of Diff(S^1) with coefficients in differential operators......Page 65
3.3 Application: geometry of differential operators on RP^1......Page 70
3.4 Algebra of tensor densities on S^1......Page 75
3.5 Extensions of Vect(S^1) by the modules F_λ(S^1)......Page 79
4.1 Classic four-vertex and six-vertex theorems......Page 82
4.2 Ghys’ theorem on zeroes of the Schwarzian derivative and geometry of Lorentzian curves......Page 89
4.3 Barner’s theorem on inflections of projective curves......Page 93
4.4 Applications of strictly convex curves......Page 98
4.5 Discretization: geometry of polygons, back to configurations......Page 103
4.6 Inflections of Legendrian curves and singularities of wave fronts......Page 110
5 Projective invariants of submanifolds......Page 116
5.1 Surfaces in RP^3: differential invariants and local geometry......Page 117
5.2 Relative, affine and projective differential geometry of hypersurfaces......Page 129
5.3 Geometry of relative normals and exact transverse line fields......Page 136
5.4 Complete integrability of the geodesic flow on the ellipsoid and of the billiard map inside the ellipsoid......Page 146
5.5 Hilbert’s fourth problem......Page 154
5.6 Global results on surfaces......Page 161
6.1 Definitions, examples and main properties......Page 166
6.2 Projective structures in terms of differential forms......Page 172
6.3 Tensor densities and two invariant differential operators......Page 174
6.4 Projective structures and tensor densities......Page 177
6.5 Moduli space of projective structures in dimension 2, by V. Fock and A. Goncharov......Page 182
7.1 Multi-dimensional Schwarzian with coefficients in (2, 1)-tensors......Page 192
7.2 Projectively equivariant symbol calculus in any dimension......Page 198
7.3 Multi-dimensional Schwarzian as a differential operator......Page 204
7.4 Application: classification of modules D^2_λ(M) for an arbitrary manifold......Page 207
7.5 Poisson algebra of tensor densities on a contact manifold......Page 210
7.6 Lagrange Schwarzian derivative......Page 218
A.1 Five proofs of the Sturm theorem......Page 227
A.2 The language of symplectic and contact geometry......Page 230
A.3 The language of connections......Page 234
A.4 The language of homological algebra......Page 236
A.5 Remarkable cocycles on groups of diffeomorphisms......Page 239
A.6 The Godbillon–Vey class......Page 242
A.7 The Adler–Gelfand–Dickey bracket and infinite-dimensional Poisson geometry......Page 245
References......Page 249
Index......Page 260