Progress in Nanoscale and Low-Dimensional Materials and Devices: Properties, Synthesis, Characterization, Modelling and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book describes most recent progress in the properties, synthesis, characterization, modelling, and applications of nanomaterials and nanodevices. It begins with the review of the modelling of the structural, electronic and optical properties of low dimensional and nanoscale semiconductors, methodology of synthesis, and characterization of quantum dots and nanowires, with special attention towards Dirac materials, whose electrical conduction and sensing properties far exceed those of silicon-based materials, making them strong competitors. The contributed reviews presented in this book touch on broader issues associated with the environment, as well as energy production and storage, while highlighting important achievements in materials pertinent to the fields of biology and medicine, exhibiting an outstanding confluence of basic physical science with vital human endeavor. The subjects treated in this book are attractive to the broader readership of graduate and advanced undergraduate students in physics, chemistry, biology, and medicine, as well as in electrical, chemical, biological, and mechanical engineering. Seasoned researchers and experts from the semiconductor/device industry also greatly benefit from the book’s treatment of cutting-edge application studies.

Author(s): Hilmi Ünlü, Norman J. M. Horing
Series: Topics in Applied Physics, 144
Publisher: Springer
Year: 2022

Language: English
Pages: 938
City: Cham

Preface
Contents
Contributors
1 Modelling of Semiconductors for Low Dimensional Heterostructure Devices
1.1 Introduction
1.2 Strain in Low Dimensional Heterostructures
1.3 Composition Effects in Ternary/Binary Heterostructures
1.4 Electronic Band Structure Modelling
1.5 Semiempirical Tight Binding Modelling
1.5.1 Semiempirical sp3 Tight Binding Theory
1.5.2 Semiempirical sp3s* Tight Binding Theory
1.5.3 Semiempirical sp3d5 Tight Binding Theory
1.5.4 Semiempirical sp3d5s* Tight Binding Theory
1.6 Density Functional Theory Modelling
1.7 Tight Binding and DFT-MBJLDA Modelling of Band Offsets
1.8 Pressure Effects on Structure and Electronic Properties
1.8.1 Structural Parameters
1.8.2 Electronic Properties
1.9 Finite Difference Method for Low Dimensional Structures
1.9.1 Application of Finite Difference Method to Quantum Wells
1.9.2 Application of Finite Difference Method to Quantum Wires
1.9.3 Finite Difference Method Applied to Quantum Dots
1.10 Conclusion
References
2 Strain in Microscale and Nanoscale Semiconductor Heterostructures
2.1 Introduction
2.2 Strain in Planar and Core/Shell Heterostructures
2.3 Strain in Microscale Planar Heterostructures
2.4 Strain in Spherical Core/Shell Heterostructures
2.5 Strain in Cylindrical Core/Shell Heterostructures
2.6 Interface Strain and Morphology in Core/Shell QDs
2.7 Bandgaps and Band Offsts in Core/Shell Heterostructures
2.8 Strain Effects on Bandgaps and Band Offsets
2.9 Comparison of Measured and Predicted Core Bandgaps
2.9.1 Comparison of Predicted and Extracted Band Offsets
2.9.2 Conclusions and Suggestions
References
3 Synthesis, Characterization and Modelling of Colloidal Quantum Dots
3.1 Introduction
3.2 Synthesis of CdSe Core and CdSe/ZnS Core/Shell QDs
3.2.1 Synthesis of CdSe Core QDs
3.2.2 Growth of ZnS Shells on CdSe Core
3.3 HRTEM Characterization
3.4 XRD Characterization
3.5 Optical Absorption and Emission Characteristics
3.5.1 UV–Vis Characterization
3.5.2 Fluorescence Characterization
3.5.3 UV–Vis, PL and Stokes Shift
3.6 Dielectric Spectroscopy Characterization
3.7 Precursor Ratio Effect on Nanoparticle Growth
3.8 Emission Quality and PL Yield
3.9 Stability of CdSe Quantum Dots
3.10 Strain Effects on Size and Core Bandgap
3.11 Conclusion
References
4 Synthesis of Transition Metal Dichalcogenides (TMDs)
4.1 Introduction
4.2 Mechanical Exfoliation
4.2.1 Scotch-Tape Method
4.2.2 Metal-Assisted Method
4.2.3 Layer-Resolved Splitting (LRS) Method
4.3 Liquid-Phase Exfoliation
4.3.1 Organic Solvent-Based Exfoliation Method
4.3.2 Ion Intercalation Method
4.4 Chemical Vapor Deposition (CVD)
4.4.1 Thermal Chemical Vapor Deposition
4.4.2 Metal–Organic Chemical Vapor Deposition (MOCVD)
4.4.3 Chemical Vapor Transport (CVT) Method
4.5 Molecular Beam Epitaxy (MBE)
4.6 Doping/Alloy of Transition Metal Dichalcogenides
4.6.1 Substitution of Cation Elements in TMDs
4.6.2 Substitution of Anion Elements in TMDs
4.7 Summary
References
5 II-VI Semiconductor Quantum Dots: The Evolution of Color Purity with Structure
5.1 Introduction to II-VI Semiconductor Quantum Dots in Glass and Quantum Size Effect
5.2 Quantum Size Effect
5.3 Synthesis of Quantum Dots in Aqueous Solution
5.3.1 Aqueous Synthesis of CdTe Quantum Dots
5.4 Investigation of Optical and Structural Properties of CdTe Thin Films
5.4.1 Experimental Details
5.4.2 Effect of Grain Size and Strain on Bandgap Energy
5.4.3 Urbach Energy
5.4.4 XRD Spectra
5.4.5 Williamson-Hall Analysis of X-Ray Diffraction
5.4.6 Raman Spectra
5.4.7 Conclusion
5.5 Difficulties in the Thin Film Growth of ZnO and Defect Structure
5.6 Colorimetric Evaluation of Group II-VI Quantum Dots in Glass Matrix
5.6.1 Materials and Methods
5.6.2 Results and Discussions
References
6 Recent Progress in Magnetic Nanostructures Studied by Synchrotron Radiation
6.1 Introduction
6.2 XMCD and XAFS Study for Thin Film
6.2.1 Methodology
6.2.2 XMCD and XAFS for Cluster-Layered Fe/Cr Films
6.2.3 Other Applications
6.3 Mössbauer Spectroscopy for Thin Films Using Synchrotron Radiation
6.3.1 Mössbauer Spectroscopy for Thin Films
6.3.2 Synchrotron Mössbauer Source
6.3.3 Mössbauer Spectroscopy with Monoatomic Layer Spatial Resolution
6.3.4 Other Applications
References
7 Quantum Dynamics and Statistical Thermodynamics of Nanostructured Dirac-Like Materials in a Magnetic Field
7.1 Introduction
7.2 Dirac “Relativistic” Materials
7.3 Calculations A: Graphene and Dichalcogenides
7.4 Calculations B
7.5 Diced Lattice Calculations
7.6 Work in Progress and Planned
7.7 Hamiltonian: H proptop ;π = p + eA c
7.8 Green’s Function Equa. and Magnetic Field Gauge
7.9 Retarded Green’s Function Equation
7.10 Diagonal Green’s Function Analysis
7.11 Conservation of Angular Momentum
7.12 Diagonal Green’s Function Solution
7.13 Dichalcogenide Energy Spectrum
7.14 Off-Diagonal Elements
7.15 Other Representations (Notation: ρ=sqrtg2+ε2npm )
7.16 Thermodynamic Green’s Function and Spectral Weight Matrix A
7.17 Spectral Weight Matrix (Matrix Elements of A rightarrow Aij)
7.18 Model Function Dot Green’s fn. Gdot—Graphene
7.19 Landau Quantized Energy Spectrum: Graphene-Dot
7.20 Model Q-Wire Green’s Function GW—Dichalcogenide
7.21 Q-Wire Green’s Fn. Elements (Gr review)
7.22 Model Q-Wire Eigenenergy Dispersion Relation
7.23 Landau Quantized Dichalcogenide Q-Wire Energy Spectrum
7.24 Model Q-Anti-dot Lattice Dichalcogenide Landau Minibands
7.25 Lattice GL-Fn. In Magnetic Field: Analysis
7.26 Solution for Lattice GL-Function
7.27 Q-Anti-dot Lattice Energy Spectrum: Landau Minibands
7.28 Dispersion Relation Analysis for Small Anti-dot Area
7.29 Landau Minibands
7.30 Statistical Thermodynamics of Group VI Dichalcogenides in Magnetic Field
7.31 Thermodynamic Functions: Relations
7.32 Wilson’s Evaluation in Terms of Ordinary Partition Function
7.33 Retarded Green’s Fn. and Ordinary Partition Function
7.34 Thermodynamic Green’s Function and Spectral Weight A
7.35 Landau Quantized Dichalcogenide Spectral Weight
7.36 Dichalcogenide Grand Potential: Degenerate Regime
7.37 Contour Integral for Ω: Degenerate Regime
7.38 Grand Potential in the Degenerate Regime: Further Comments
7.39 Magnetic Moment of Landau Quantized Dichalcogenides
7.40 Entropy of Landau Quantized Dichalcogenides; Specific Heat
References
8 T-3 “DICED” LATTICE Quantum Dynamics and Statistical Thermodynamics (a) Zero Magnetic Field and (b) Landau Quantized
8.1 Introduction
8.2 Dynamics and Statistical Thermodynamics of the T-3 Diced Lattice
8.3 “Diced” Lattice: Retarded Green’s Fn. Gret at Zero Field
8.4 Statistical Thermodynamic Functions: Diced Lattice
8.5 Grand Potential Ω
8.6 Degenerate Regime Continued: Ω Calculation
8.7 Contour Integration for Ω
8.8 Ω In the Degenerate Regime
8.9 Entropy and Specific Heat: Degenerate Regime
8.10 T-3 “Diced” Lattice in Quantizing Magnetic Field B
8.11 Green’s Function Equations (9 Elements Gij)
8.12 Gij ("0245R,ω) Solutions; Energy Spectrum
8.13 Grand Potential Ω for Diced Lattice In Magnetic Field
8.14 Ω for Landau Quantized Diced Lattice: Degenerate Regime: µβto infty
8.15 Magnetic Moment M of Diced Lattice: Degenerate Regime ( T to 0 )
8.16 Magnetic Moment M of Diced Lattice: Temperature Corrections ΔM in the Approach to T = 0
8.17 Entropy and Specific Heat of Landau-Quantized Diced Lattice
8.18 Summary: T-3 Diced Lattice—Zero Field Statistical Thermodynamic Degenerate Regime
8.19 Summary: T-3 Diced Lattice—Magnetic Field Statistical Thermodynamics (A) Degenerate Regime
8.20 Summary: T-3 Diced Lattice—Magnetic Field Statistical Thermodynamics (B) Degenerate Regime
References
9 Exact Temperature and Density Dependencies of the Statistical Thermodynamic Functions of the Pseudospin-1 Diced Lattice Carriers
9.1 Introduction
9.2 Calculations
9.3 Degenerate Limit
9.4 Non-degenerate Limit
9.5 Discussion
References
10 Non-Markovian Fermionic Quantum State Diffusion Approach
10.1 Introduction
10.2 The NMQSD Theory for Quantum System Coupled to Fermionic Baths
10.2.1 The General Stochastic Schrödinger Equation and the Corresponding Master Equation
10.2.2 Examples of Solving Fermionic Bath with Fermionic NMQSD Equation
10.2.3 Summary
10.3 NMQSD Theory for a Quantum System Coupled to a Hybrid Bath
10.3.1 Hybrid Baths: Commutative and Anti-commutative Cases
10.3.2 Commutative Hybrid Bath
10.3.3 Anti-commutative Hybrid Bath
10.3.4 Summary
10.4 Conclusion
10.5 Appendix: Grassmann Algebra and Fermionic Coherent State
References
11 Synthetic Spin-Orbit-Coupling in Ultracold Atomic Gases and Topological Superfluids
11.1 Introduction
11.2 Spin-Orbit-Coupled Bose-Einstein Condensate
11.2.1 Synthetic Spin-Orbit-Coupling
11.2.2 Mean-Field Description
11.2.3 Hydrodynamic Theory
11.2.4 Low-Energy Collective Modes
11.3 Spin-Orbit-Coupled Fermi Gas and Topological Superfluid
11.3.1 Tight Binding Model and Bogliubov-De Gennes Equation
11.3.2 Topological Phase Transition
11.3.3 Topological Superfluids and Majorana Edge Modes
References
12 Control with EIT: High Energy Charged Particle Detection
12.1 Introduction
12.1.1 A Brief Review on EIT
12.2 Developing a Picture of EIT with Three-Level Λ Systems
12.2.1 Hamiltonian in the Field Interaction Picture
12.2.2 Lindblad Formalism: Finding EIT Steady States
12.2.3 Optical Response Functions
12.3 Control Scheme
12.3.1 The Concept
12.3.2 Optical Response Functions in the Control Regime
12.4 Application: Detecting High-Energy Charged Particles Using EIT
12.4.1 A Model Using Fourier Transformed Maxwell's Equations
12.4.2 Cherenkov Radiation in the EIT Regime
12.4.3 Perturbation to Steady States: Developing a Control Method to Detect High Energy Particles
12.5 Summary and Vision for Nanophotonics
References
13 Probing Plasmons by EELS in Chiral Array of Hyperbolic Metasurfaces. The Role of Plasmon Canalization
13.1 Introduction
13.2 Formalism of the Electron Energy Loss for Stratified Media with Hyperbolic Metasurfaces
13.3 Reflection and Transfer Matrices for Anisotropic Stratified Media
13.4 EELS in Terms of Conductivity Tensor Elements
13.5 Energy Loss at Hyperbolic Metasurfaces
13.6 Summary
13.7 Appendix A. Green's Function Tensor for Anisotropic Stratified Media
References
14 Landau Quantized Dynamics and Energy Spectra of Asymmetric Double-Quantum-Dot Systems: (a) Nonrelativistic Electrons; (b) Dirac T-3 ``Diced'' Lattice Carriers
14.1 Introduction: Asymmetric Double-Quantum-Dot Green's Function
14.2 Infinite Sheet Nonrelativistic 2D ``p2/2m'' Magnetic Field Green's Function G2DB
14.3 Dispersion Relation for a Nonrelativistic ``p2/2m'' Asymmetric Double-Quantum-Dot in a Normal Magnetic Field
14.4 Infinite Sheet Landau Quantized Greens Function for the T-3 ``Diced'' Lattice
14.5 Eigenenergy Dispersion Relation for a T-3 ``Diced'' Lattice Asymmetric Double-Quantum Dot in a Normal Magnetic Field
14.6 Conclusions
14.7 Appendix
References
15 Two Dimensional Magnetopolaritons and the Associated Landau Quantized Magnetoconductivity Tensor
15.1 Electromagnetic Propagator for a Landau Quantized 2D Plasma
15.2 2D Linear Conductivity Tensor
15.3 2D Magnetopolaritons in a Quantizing Magnetic Field
15.4 Appendix 1: Alternative Formulation of the 2D Magnetoplasma Dispersion Relation
15.5 Appendix 2: The Time-Ordered Exponential Time Development Operator
15.6 Appendix 3: Semiclassical Model
References
16 Quantum Dynamics in a 1D Dot/Antidot Lattice: Landau Minibands and Graphene Wave Packet Motion in a Magnetic Field
16.1 Introduction
16.2 Determination of the Quantum Dot Lattice Green's Function
16.3 Role of the Magnetic Field
16.4 Energy Spectrum: Landau Minibands
16.5 Landau Quatized Graphene: Wave Packet Dynamics in an Antidot Lattice
16.5.1 Landau Quantization
16.5.2 Density of States
16.5.3 Off-Diagonal Elements
16.6 Wave Packet Dynamics with Various Pseudospin Polarizations: Zitterbewegung
16.7 Graphene Antidot Lattice in the Presence of a Magnetic Field
16.7.1 Landau Minibands
16.8 Green's Functions: Frequency and Time Representation
16.9 Wave Packet Dynamics Along a One-Dimensional Antidot Lattice
16.9.1 Experimental Relevance
16.10 Discussion
16.11 Zitterbewegung Phenomenon
16.11.1 Prediction and Interpretation of Zitterbewegung by Schrödinger
16.11.2 Zitterbewegung: Interpretation in Terms of Interference Between Positive and Negative Energy States
16.12 Contour Integration
References
17 Numerical Analysis of the Helmholtz Green's Function for Scalar Wave Propagation Through a Nano-hole on a Plasmonic Layer
17.1 Introduction
17.2 Green's Function Solution for Full 2D Plasmonic Layer Embedded in a 3D Bulk Host Medium
17.2.1 Integral Equation for the Scalar Green's Function and Solution
17.3 Green's Function Solution for a Perforated 2D Plasmonic Layer with a Nano-hole Embedded in a 3D Bulk Host Medium
17.3.1 Integral Equation: Scalar Helmholtz Green's Function for a Perforated Plasmonic Layer
17.4 Numerical Results
17.5 Concluding Remarks
References
18 Near Zone Electromagnetic Wave Transmission Through a Nano-Hole in a Plasmonic Layer
18.1 Introduction
18.2 Analytical Formulation
18.3 Calculated Transmission Results: Near Zone
References
19 Spin Dependent Thermoelectric Currents of Tunnel Junctions, and Other Nanostructures: Onsager Response-Theory
19.1 Introduction
19.2 Theory
19.2.1 Onsager Theory
19.2.2 Tunnel Junctions Involving Superconductors
19.3 Summary
References
20 Bulk to Low Dimensional 2D Thermoelectric Materials: Latest Theoretical Research and Future View
20.1 Introduction
20.2 Principles of Thermoelectric Energy Conversion
20.2.1 Thermoelectric Figure of Merit
20.3 Theoretical Investigations of 2D Thermoelectric Materials
20.3.1 Theoretical Background
20.3.2 Recent Theoretical Results
20.4 Strategies for Enhancement of Thermoelectric Figure of Merit
20.5 Conclusion
References
21 Reversible DC Electric Field Modification of Optical Properties of CdTe Nanocrystals
21.1 Introduction
21.1.1 Electro-Optic Modification of Spectra
21.2 Theory
21.2.1 Size Distribution of the Crystals n(R)
21.3 Sample Preparation
21.3.1 Semiconductor Nanoparticles Grown in Glass Matrixes
21.3.2 Synthesis of Semiconductor Nanoparticles and Their Absorption Spectra
21.4 Measurement of Spectra
21.4.1 Sample Rigs for Electro Optical Measurements
21.4.2 Determination of Optical Band Gap from Tauc Plots Under H.V. Fields
21.5 Results
21.5.1 Effect of Annealing Time on Quantum Dot Growth
21.5.2 Effect of Step H.V. Field on Quantum Dot Samples in Glass and Solution Matrixes
21.6 Discussion
21.6.1 Modification of Nanoparticle Bandgap in Both Matrixes
21.6.2 Decrease in Sample Bandwidth with Electric Field
21.7 Conclusion
References
22 Perpendicular Andreev Reflection: Solid State Signature of Black Hole Horizon
22.1 Introduction
22.2 Dirac and Weyl Hamiltonian in Solids
22.3 Chirality-Odd Superconductivity
22.4 Classification of Superconducting Order in 3DDM
22.5 Implications of Pseudo-Scalar Superconductivity
22.6 Boundary Conditions
22.6.1 Classification of Boundary Conditions in WSMs
22.7 Green's Function of Semi-infinite Weyl Semimetals
22.7.1 1-Type BC
22.7.2 2 as the Boundary Matrix
22.8 Superconducting Proximity in Fermi Arc States
22.9 Inducing Superconductivity in Fermi Arcs
22.9.1 1-Type BC
22.9.2 2-Type BC
22.9.3 Linear Combination of 1-Type and 2-Type BCs
22.10 Pairing Symmetry of Fermi Arc States: Majorana Fermi Contour
22.10.1 Chirality-Even Pairing
22.10.2 Odd-Chirality Pairing
22.10.3 Majorana Nature of BFC
References
23 Atomistic Tight-Binding Study of Core/Shell Nanocrystals
23.1 Introduction
23.2 Valence Force Field
23.2.1 Valence Force Field Method (VFF)
23.2.2 Examples of the Calculations
23.3 Empirical Tight-Binding Method
23.3.1 The Bulk Hamiltonian
23.3.2 Empirical Tight-Binding Parameterization
23.4 Empirical Tight-Binding Theory of Core/Shell Nanocrystals
23.4.1 The sp3 s* Empirical Tight-Binding Description
23.4.2 Oscillation Strength
23.4.3 Optical Spectra
23.4.4 Radiative Lifetime
23.4.5 Many-Body Hamiltonian
23.4.6 Examples of the Tight-Binding Calculations
23.5 Conclusion
References
24 Tight Binding and Density Functional Theory of Tailoring Electronic Properties in Al1−xInxN/AlN/GaN High Electron Mobility Transistors (HEMTs)
24.1 Introduction
24.2 Semi-empirical Tight Binding Theory
24.3 Density Functional Theory Calculations
24.3.1 Wien2k Code Tuning
24.3.2 Vasp Code Tuning
24.4 Group III-Nitrides Basic Structures
24.5 Tailoring Bandgap by Alloying
24.6 Tailoring Effective Mass by Alloying
24.7 Density of States
24.8 High Pressure Effects on Bandgap Energy
24.8.1 Phase Transition Pressures
24.8.2 Bandgap Energy Variation with Pressure
24.9 Strain Effects on Heterostructure Bandgap
24.9.1 Tight Binding Prediction of Bandgap
24.9.2 Density Functional Theory Predicton of Bandgap
24.10 Strain Effects on Electron Effective Mass
24.11 Polarization Effects
24.12 Hemt Device
24.12.1 Hemt Physical Processes
References
25 Nonlinear Optical Properties of Low Dimensional Quantum Systems
25.1 Introduction
25.2 Theoretical Framework and Discussions
25.2.1 Quantum Wells (QWs)
25.2.2 Quantum Dots (QDs)
25.2.3 Quantum Wires
25.3 Conclusion
References
26 One-Dimensional Silicon Nano-/microstructures Based Opto-Electronic Devices
26.1 Introduction
26.2 Fabrication of One-Dimensional (1D)Silicon Nano-/microstructures
26.2.1 Dry Etching
26.2.2 Wet Etching
26.3 Optoelectronic Device Applications
26.3.1 Solar Cells
26.3.2 Photodetectors
26.4 Summary and Future Outlook
References
27 Two-Dimensional Nanomaterials Based Biosensors
27.1 Introduction
27.2 Computational Details
27.3 Results and Discussions
27.3.1 Relaxed Adsorption Structures and Adsorption Energies
27.3.2 Effects of Charging on Electronic Energy and Band Structure
27.3.3 Simulating Adsorbent Behavior Under Charging via Pulling Mechanism
27.4 Conclusion
References
28 Recent Applications of Microfluidics in Bionanotechnology
28.1 Introduction
28.2 Microfluidic Bioreactors
28.3 Microbial Behaviour Studies by Microfluidics
28.4 Strain Development
28.5 Single-Cell Studies
28.6 Nucleic Acid Amplification
28.7 DNA Microarrays
28.8 Conclusions
References
29 Synthesis and Biological Use of Nanomaterials
29.1 Introduction
29.2 Liposomes
29.2.1 Classification of Liposomes
29.2.2 Synthesis Methods of Liposomes
29.2.3 Biological Applications of Liposomes
29.3 Micelles
29.3.1 Synthesis of Micelles
29.3.2 Biological Applications of Micelles
29.4 Magnetic Nanoparticles
29.4.1 Synthesis of Magnetic Nanoparticles
29.4.2 Biomedical Applications of Magnetic Nanoparticles
29.5 Dendrimers
29.5.1 Synthesis of Dendrimers
29.5.2 Biological Applications of Dendrimers
29.6 Metal Nanoparticles
29.6.1 Silver Nanoparticles (AgNPs)
29.6.2 Gold Nanoparticles (AuNPs)
29.7 Carbon Nanotubes (CNTs)
29.7.1 Synthesis of CNTs
29.7.2 Biological Applications of CNTs
29.8 Conclusions
References
30 Recent Advances in Textile Wastewater Treatment Using Nanoporous Zeolites
30.1 Introduction
30.2 Methodology
30.2.1 Batch Adsorption Studies
30.2.2 Column Adsorption Studies
30.2.3 Dyes and Low-Cost Adsorbents
30.3 Dye/Color Removal from Textile Dyeing Effluents Using Nanoporous Zeolites
30.3.1 Dye Adsorption onto Natural and Synthetic Zeolites in the Batch Systems
30.3.2 Dye/Color Removal from Textile Wastewaters in the Fixed Bed Columns
30.3.3 Dye Wastewater Treatment Systems Combined with Zeolites
30.4 Cost Analysis
30.5 Conclusions
References
31 Removal of Heavy Metals and Dyes from Wastewaters by Raw and Activated Carbon Hazelnut Shells
31.1 Introduction
31.2 Pore Charateristics of Porous Solids
31.3 Activated Carbon Production from Hazelnut Shells
31.4 Removal of Heavy Metals from Wastewaters Using Hazelnut Shells
31.4.1 Removal of Heavy Metals from Wastewaters by Raw Hazelnut Shells
31.4.2 Removal of Heavy Metals from Wastewaters by Activated Carbon Hazelnut Shells
31.5 Removal of Dyes from Wastewaters Using Hazelnut Shells
31.5.1 Removal of Dyes from Wastewaters by Raw Hazelnut Shells
31.5.2 Removal of Dyes from Wastewaters by Activated Carbon Hazelnut Shells
31.6 Conclusions
References
Index