The first book on Prognostics and Health Management of ElectronicsRecently, the field of prognostics for electronic products has received increased attention due to the potential to provide early warning of system failures, forecast maintenance as needed, and reduce life cycle costs. In response to the subject's growing interest among industry, government, and academic professionals, this book provides a road map to the current challenges and opportunities for research and development in Prognostics and Health Management (PHM).The book begins with a review of PHM and the techniques being developed to enable a prognostics approach for electronic products and systems. building on this foundation, the book then presents the state of the art in sensor systems for in-situ health and usage monitoring. Next, it discusses the various models and algorithms that can be utilized in PHM. Finally, it concludes with a discussion of the opportunities in future research.Readers can use the information in this book to:Detect and isolate faultsReduce the occurrence of No Fault Found (NFF)Provide advanced warning of system failuresEnable condition-based (predictive) maintenanceObtain knowledge of load history for future design, qualification, and root cause analysisIncrease system availability through an extension of maintenance cycles and/or timely repair actionsSubtract life cycle costs of equipment from reduction in inspection costs, down time, and inventoryPrognostics and Health Management of Electronics is an indispensable reference for electrical engineers in manufacturing, systems maintenance, and management, as well as design engineers in all areas of electronics.
Author(s): Michael G. Pecht
Edition: 1
Year: 2008
Language: English
Pages: 316
Prognostics and Health Management of Electronics......Page 6
Contents......Page 8
Preface......Page 12
Acknowledgements......Page 14
Acronyms......Page 18
1.1 Reliability and Prognostics......Page 22
1.2 PHM for Electronics......Page 24
1.3 PHM Concepts and Methods......Page 27
1.3.1 Fuses and Canaries......Page 28
1.3.2 Monitoring and Reasoning of Failure Precursors......Page 30
1.3.3 Monitoring Environmental and Usage Profiles for Damage Modeling......Page 34
1.4 Implementation of PHM for System of Systems......Page 39
1.5 Summary......Page 40
2.1 Sensor and Sensing Principles......Page 46
2.1.1 Thermal Sensors......Page 47
2.1.2 Electrical Sensors......Page 48
2.1.4 Humidity Sensors......Page 49
2.1.6 Chemical Sensors......Page 50
2.1.7 Optical Sensors......Page 51
2.1.8 Magnetic Sensors......Page 52
2.2 Sensor Systems for PHM......Page 53
2.2.2 Sensor System Performance......Page 54
2.2.4 Functional Attributes of Sensor Systems......Page 55
2.3 Sensor Selection......Page 59
2.4 Examples of Sensor Systems for PHM Implementation......Page 62
2.5 Emerging Trends in Sensor Technology for PHM......Page 65
3.1 Introduction......Page 68
3.2 Parametric Statistical Methods......Page 69
3.2.1 Likelihood Ratio Test......Page 70
3.2.3 Neyman-Pearson Criterion......Page 71
3.2.6 Maximum A Posteriori Estimation......Page 72
3.3.1 Nearest Neighbor–Based Classification......Page 73
3.3.2 Parzen Window (or Kernel Density Estimation)......Page 74
3.3.5 Chi Square Test......Page 75
3.4 Machine Learning Techniques......Page 76
3.5.1 Discriminative Approach......Page 78
3.5.2 Generative Approach......Page 82
3.6.1 Discriminative Approach......Page 84
3.6.2 Generative Approach......Page 86
3.7 Summary......Page 88
4.1 PoF-Based PHM Methodology......Page 94
4.3 Loads......Page 95
4.4 Failure Modes, Mechanisms, and Effects Analysis......Page 96
4.5 Stress Analysis......Page 99
4.6 Reliability Assessment and Remaining-Life Predictions......Page 100
4.7 Outputs from PoF-Based PHM......Page 103
5.1 Return on Investment......Page 106
5.1.1 PHM ROI Analyses......Page 107
5.2 PHM Cost-Modeling Terminology and Definitions......Page 109
5.3 PHM Implementation Costs......Page 110
5.3.2 Recurring Costs......Page 111
5.3.4 Nonmonetary Considerations and Maintenance Culture......Page 112
5.4 Cost Avoidance......Page 114
5.4.1 Maintenance Planning Cost Avoidance......Page 115
5.4.2 Discrete Event Simulation Maintenance Planning Model......Page 116
5.4.4 Precursor to Failure Monitoring......Page 117
5.4.5 LRU-Independent Methods......Page 118
5.4.6 Discrete Event Simulation Implementation Details......Page 120
5.4.7 Operational Profile......Page 121
5.5 Example PHM Cost Analysis......Page 122
5.5.1 Single-Socket Model Results......Page 123
5.5.2 Multiple-Socket Model Results......Page 125
5.5.3 Example Business Case Construction......Page 129
5.6 Summary......Page 135
6.1 Introduction......Page 140
6.2 Roadmap Classifications......Page 141
6.2.1 PHM: Component Level......Page 142
6.2.3 High-Power Switching Electronics......Page 143
6.2.5 Electronics/Electro-Optical Prognostics for Tactical Sensor Systems......Page 144
6.2.7 PHM as Mitigation of Reliability Risks......Page 145
6.3 PHM at System Level......Page 146
6.3.4 Dynamic Reconfiguration......Page 147
6.3.7 Prognostics for Software......Page 148
6.4 Methodology Development......Page 150
6.4.2 Approaches to Training......Page 151
6.5.1 Cost, ROI, Business Case Development......Page 152
6.5.2 Liability and Litigation......Page 153
6.5.3 Role of Standards Organizations......Page 154
Appendix A Commercially Available Sensor Systems for PHM......Page 156
Appendix B PHM in Industry, Academia, and Government......Page 188
Appendix C Journals and Conference Proceedings Related to PHM......Page 328
Index......Page 330