Production Systems Engineering: Cost and Performance Optimization

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Optimize Economic and Technological Requirements in Production System Designs This pioneering work offers proven techniques, partially created and developed at The Charles Stark Draper Laboratory, for determining optimal resource allocation and cost-effective production system designs for today’s any-volume manufacturing environments. Production Systems Engineering presents a unique methodology that synthesizes applicable technology with economic requirements for an integrated solution. Featuring real-world case studies, this authoritative resource establishes a new paradigm for the manufacturing world that can also be applied to other enterprise environments. Coverage includes: Determining an improved manufacturing system design method System design basics, time allocation, resources, costs, and quality rating Stochastic analyses added to deterministic results System configuration options Multiple disparate products produced by one system World class versus mostly manual systems Determining allowable investment Simultaneous improvement in yield and cycle-time

Author(s): Richard Gustavson
Edition: 1
Year: 2010

Language: English
Pages: 256

Contents......Page 8
List of Tables......Page 12
List of Illustrations......Page 14
Preface......Page 18
1 Finding a Better Method for Manufacturing System Design......Page 22
1.1 The Situation......Page 24
1.2 Internal Organization of Companies......Page 25
1.3 Economic Justification......Page 27
1.4 Manufacturing Methodologies......Page 28
1.5 Solving the System Design Problem......Page 31
1.6 Summary......Page 32
2 Results from Initial Studies......Page 34
2.1 Background......Page 36
2.2 Basics of System Design......Page 37
2.3 Available Time for a Resource......Page 39
2.5 Flexibility of a Resource......Page 40
2.6 Fixed Cost of a Station......Page 41
2.7 Variable Cost for a Task......Page 42
2.9 Solution Procedure......Page 43
2.11 Results......Page 45
2.12 Summary......Page 48
3 Real-World Applications Lead to Enhanced Understanding......Page 50
3.1 Introduction......Page 52
3.3 Using a Component/Mate Schematic......Page 53
3.4 Establishing the Process Plan for an Assembly System......Page 54
3.5 Specifying the Economic Constraints and Production Requirements......Page 62
3.6 Determining a Group of Usable Systems......Page 68
3.7 Details of the Best System......Page 74
3.8 Management Overview of a System......Page 79
3.10 Summary......Page 83
4 Stochastic Analyses Added to Deterministic Results......Page 84
4.1 Introduction......Page 86
4.2 Applicable Discrete Event Distributions......Page 87
4.3 Using the Triangular Distribution......Page 89
4.4 Application to a Manufacturing System......Page 92
4.5 Using the Exponential Distribution......Page 99
4.6 Application to Synthesis of Systems......Page 110
4.7 Summary......Page 113
5 Initial Look at System Configurations......Page 114
5.2 Geometric Layouts......Page 116
5.3 Schematic Layout Basis......Page 117
5.5 Closed Loop System—Without Spacing......Page 118
5.6 Closed Loop System—With Spacing......Page 119
5.7 “U” Cell System......Page 122
5.8 3-D View of a System......Page 123
5.9 Summary......Page 126
6 Multiple Disparate Products Produced by One System......Page 128
6.1 Introduction......Page 130
6.3 Establishing the Multiple-Product Task/Resource Matrix......Page 131
6.4 Specifying the Production Requirements......Page 132
6.5 Determining a Group of Usable Systems......Page 135
6.6 Details of the Best Multiple-Product System......Page 139
6.7 Management Overview of a System......Page 144
6.8 Summary......Page 152
7 World-Class Versus Mostly Manual Systems......Page 154
7.1 Introduction......Page 156
7.2 The Constant Value Situation......Page 159
7.3 Nonconstant Yearly Costs......Page 162
7.4 Changes in Yearly Production Volume......Page 163
7.5 Changes in Yearly Costs and Production Volume......Page 164
7.6 Summary......Page 166
A: Determining Allowable Investment......Page 168
A.2 Description of a New Technique......Page 170
A.3 Allowable World-Class Investment......Page 178
B: Economic–Technological Synthesis of Systems......Page 180
B.1 Introduction......Page 182
B.2 Basic Ideas......Page 183
B.4 Cost Comparison Equation......Page 184
B.6 Applicable Technology Chart......Page 186
B.7 Finding the Least-Cost System......Page 188
C: Establishing Task Data for Assembly Systems......Page 192
C.1 Introduction......Page 194
C.2 Fundamental Principles......Page 196
C.3 Input Data Requirements......Page 197
C.5 The Base Component......Page 199
C.6 The Exploded View......Page 200
C.7 An Assembly Sequence......Page 201
C.9 The Best Assembly Process Plan......Page 203
C.10 Summary......Page 208
D: Simultaneous Improvement in Yield and Cycle-Time......Page 210
D.1 Introduction......Page 212
D.2 A Different Approach......Page 214
D.3 Evaluating Production Improvement......Page 215
D.4 Expected Production Output......Page 219
D.5 Expected Costs......Page 220
D.6 Summary......Page 222
E: Two Case Study Summaries......Page 224
E.1 Case Study Number 21—Automatic Transmission Final Assembly......Page 226
E.2 Case Study Number 24—Automatic Transmission and Differential Final Assembly......Page 227
E.3 Summary......Page 230
F: Advanced System Design Procedure......Page 232
F.1 Introduction......Page 234
F.2 Basic Information......Page 235
F.3 Optimizing Assembly......Page 236
F.4 Design of Assembly Systems......Page 238
F.5 Limitations on Program......Page 241
References......Page 242
A......Page 244
B......Page 245
E......Page 246
H......Page 247
M......Page 248
N......Page 249
R......Page 250
S......Page 251
U......Page 252
Y......Page 253
Z......Page 254