Problems and proofs in real analysis: theory of measure and integration

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume consists of the proofs of 391 problems in Real Analysis: Theory of Measure and Integration (3rd Edition). Most of the problems in Real Analysis are not mere applications of theorems proved in the book but rather extensions of the proven theorems or related theorems. Proving these problems tests the depth of understanding of the theorems in the main text. This volume will be especially helpful to those who read Real Analysis in self-study and have no easy access to an instructor or an advisor

Author(s): James J Yeh
Edition: 1
Publisher: World Scientific Publishing Company
Year: 2014

Language: English
Commentary: Added cover and bookmarks to item with MD5 b3eaa36e33dd6349c857237b2695c157.
Pages: 499

Contents
Preface
§1 Measure on a a-algebra of Sets
§2 Outer Measures
§3 Lebesgue Measure on R
§4 Measurable Functions
§5 Completion of Measure Space
§6 Convergence a.e. and Convergence in Measure
§7 Integration of Bounded Functions on Sets of Finite Measure
§8 Integration of Nonnegative Functions
§9 Integration of Measurable Functions
§ 10 Signed Measures
§ 11 Absolute Continuity of a Measure
§ 12 Monotone Functions and Functions of Bounded Variation
§13 Absolutely Continuous Functions
§ 16 The LP Spaces
§ 17 Relation among the LP Spaces
§ 18 Bounded Linear Functionals on the LP Spaces
§22 Lebesgue-Stieltjes Measure Spaces
§23 Product Measure Spaces
§24 Lebesgue Measure Space on the Euclidean Space
§25 Differentiation on the Euclidean Space