Probabilistic Similarity Networks

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In this remarkable blend of formal theory and practical application, David Heckerman develops methods for building normative expert systems—expert systems that encode knowledge in a decision-theoretic framework. Heckerman introduces the similarity network and partition, two extensions to the influence diagram representation. He uses the new representations to construct Pathfinder, a large, normative expert system for the diagnosis of lymph-node diseases. Heckerman shows that such expert systems can be built efficiently, and that the use of a normative theory as the framework for representing knowledge can dramatically improve the quality of expertise that is delivered to the user. He concludes with a formal evaluation of the power of his methods for building normative expert systems. David Heckerman is Assistant Professor of Computer Science at the University of Southern California. He received his doctoral degree in Medical Information Sciences from Stanford University. Contents : Introduction. Similarity Networks and Partitions: A Simple Example. Theory of Similarity Networks. Pathfinder: A Case Study. An Evaluation of Pathfinder. Conclusions and Future Work.

Author(s): David Heckerman
Series: ACM Doctoral Dissertation Award
Publisher: The MIT Press
Year: 1991

Language: English
Pages: 252