A newly updated and expanded edition that combines theory and applications of turbomachinery while covering several different types of turbomachinery
In mechanical engineering, turbomachinery describes machines that transfer energy between a rotor and a fluid, including turbines, compressors, and pumps. Aiming for a unified treatment of the subject matter, with consistent notation and concepts, this new edition of a highly popular book provides all new information on turbomachinery, and includes 50% more exercises than the previous edition. It allows readers to easily move from a study of the most successful textbooks on thermodynamics and fluid dynamics to the subject of turbomachinery. The book also builds concepts systematically as progress is made through each chapter so that the user can progress at their own pace.
Author(s): Seppo A. Korpela
Series: Fluid Mechanics
Edition: 2nd
Publisher: Wiley
Year: 2019
Language: English
Pages: 592
Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 9
Foreword......Page 17
Acknowledgments......Page 19
About the Companion Website......Page 21
1.1.1 Energy conversion of fossil fuels......Page 23
1.1.2 Steam turbines......Page 24
1.1.3 Gas turbines......Page 25
1.1.4 Hydraulic turbines......Page 26
1.1.7 Pumps and blowers......Page 27
1.1.8 Other uses and issues......Page 28
1.2.1 Water power......Page 29
1.2.2 Wind turbines......Page 30
1.2.3 Steam turbines......Page 31
1.2.4 Jet propulsion......Page 32
1.2.6 Pumps and compressors......Page 33
1.2.7 Note on units......Page 34
2.1 Mass Conservation Principle......Page 37
2.2 First Law of Thermodynamics......Page 39
2.3.1 Tds‐equations......Page 41
2.4 Equations of State......Page 42
2.4.1 Properties of steam......Page 43
2.4.2 Ideal gases......Page 49
2.4.3 Air tables and isentropic relations......Page 51
2.4.4 Ideal gas mixtures......Page 54
2.4.5 Incompressibility......Page 58
2.5.1 Efficiency measures......Page 59
2.5.2 Thermodynamic losses......Page 65
2.5.3 Incompressible fluid......Page 67
2.5.4 Compressible flows......Page 68
2.6 Momentum Balance......Page 70
3.1 Mach Number and The Speed of Sound......Page 85
3.1.1 Mach number relations......Page 87
3.2 Isentropic Flow with Area Change......Page 89
3.2.1 Converging nozzle......Page 93
3.3.1 Polytropic efficiency......Page 95
3.3.2 Loss coefficients......Page 99
3.3.3 Nozzle efficiency......Page 103
3.3.4 Combined Fanno flow and area change......Page 104
3.4 Supersonic Nozzle......Page 109
3.5 Normal Shocks......Page 112
3.5.1 Rankine-Hugoniot relations......Page 117
3.6 Moving Shocks......Page 120
3.7.1 Mach waves......Page 122
3.7.2 Oblique shocks......Page 123
3.7.3 Supersonic flow over a rounded concave corner......Page 129
3.7.4 Reflected shocks and shock interactions......Page 130
3.7.6 Detached oblique shocks......Page 132
3.7.7 Prandtl-Meyer theory......Page 134
Chapter 4 Gas Dynamics of Wet Steam......Page 153
4.1.1 Clausius-Clapeyron equation......Page 154
4.1.2 Adiabatic exponent......Page 155
4.2 Conservation Equations for Wet Steam......Page 159
4.2.1 Relaxation times......Page 161
4.2.2 Conservation equations in their working form......Page 166
4.2.3 Sound speeds......Page 168
4.3.1 Type I wave......Page 171
4.3.2 Type II wave......Page 176
4.3.4 Combined relaxation......Page 179
4.3.5 Flow in a variable area nozzle......Page 181
4.4 Shocks in Wet Steam......Page 183
4.4.1 Evaporation in the flow after the shock......Page 186
4.5 Condensation Shocks......Page 189
4.5.1 Jump conditions across a condensation shock......Page 191
Chapter 5 Principles of Turbomachine Analysis......Page 199
5.1 Velocity Triangles......Page 200
5.2 Moment of Momentum Balance......Page 203
5.3 Energy Transfer in Turbomachines......Page 204
5.3.1 Trothalpy and specific work in terms of velocities......Page 208
5.3.2 Degree of reaction......Page 211
5.4 Utilization......Page 213
5.5.1 Similitude......Page 220
5.5.2 Incompressible flow......Page 221
5.5.3 Shape parameter or specific speed and specific diameter......Page 224
5.5.4 Compressible flow analysis......Page 228
5.6.1 Compressor performance map......Page 230
5.6.2 Turbine performance map......Page 231
6.1 Introduction......Page 237
6.2.1 Single‐stage impulse turbine......Page 239
6.2.2 Pressure compounding......Page 248
6.2.3 Blade shapes......Page 252
6.2.4 Velocity compounding......Page 255
6.3 Stage with Zero Reaction......Page 260
6.4 Loss Coefficients......Page 263
7.1 Introduction......Page 269
7.2 Turbine Stage Analysis......Page 271
7.3 Flow and Loading Coefficients and Reaction Ratio......Page 275
7.3.1 Fifty percent (50%) stage......Page 280
7.3.2 Zero percent (0%) reaction stage......Page 284
7.3.3 Off‐design operation......Page 285
7.3.4 Variable axial velocity......Page 287
7.4 Three‐Dimensional Flow and Radial Equilibrium......Page 289
7.4.1 Free vortex flow......Page 291
7.4.3 Constant mass flux......Page 295
7.5.1 Soderberg loss coefficients......Page 298
7.5.2 Stage efficiency......Page 299
7.5.3 Stagnation pressure losses......Page 301
7.5.4 Performance charts......Page 307
7.5.5 Zweifel correlation......Page 312
7.5.6 Further discussion of losses......Page 313
7.5.7 Ainley-Mathieson correlation......Page 315
7.5.8 Secondary loss......Page 318
7.6.1 Reheat factor in a multistage turbine......Page 324
7.6.2 Polytropic or small‐stage efficiency......Page 326
Chapter 8 Axial Compressors......Page 333
8.1 Compressor Stage Analysis......Page 334
8.1.1 Stage temperature and pressure rise......Page 335
8.1.2 Analysis of a repeating stage......Page 337
8.2 Design Deflection......Page 343
8.2.1 Compressor performance map......Page 346
8.3 Radial Equilibrium......Page 348
8.3.1 Modified free vortex velocity distribution......Page 349
8.3.2 Velocity distribution with zero‐power exponent......Page 352
8.3.3 Velocity distribution with first‐power exponent......Page 353
8.4 Diffusion Factor......Page 355
8.4.1 Momentum thickness of a boundary layer......Page 357
8.5.1 Efficiency......Page 361
8.5.2 Parametric calculations......Page 364
8.6 Cascade Aerodynamics......Page 365
8.6.1 Blade shapes and terms......Page 366
8.6.2 Blade forces......Page 367
8.6.3 Other losses......Page 369
8.6.4 Diffuser performance......Page 370
8.6.5 Flow deviation and incidence......Page 371
8.6.6 Multi‐stage compressor......Page 373
8.6.7 Compressibility effects......Page 374
8.6.8 Design of a compressor......Page 375
Chapter 9 Centrifugal Compressors and Pumps......Page 385
9.1 Compressor Analysis......Page 386
9.1.1 Slip factor......Page 387
9.1.2 Pressure ratio......Page 389
9.2 Inlet Design......Page 396
9.2.1 Choking of the inducer......Page 401
9.3.1 Performance characteristics......Page 403
9.3.2 Diffusion ratio......Page 406
9.3.3 Blade height......Page 407
9.4 Vaneless Diffuser......Page 409
9.5 Centrifugal Pumps......Page 413
9.5.1 Specific speed and specific diameter......Page 417
9.6 Fans......Page 425
9.7 Cavitation......Page 426
9.8.1 Vaneless diffuser......Page 428
9.8.2 Volute design......Page 429
Chapter 10 Radial Inflow Turbines......Page 437
10.1 Turbine Analysis......Page 438
10.2 Efficiency......Page 443
10.3 Specific Speed and Specific Diameter......Page 447
10.4 Stator Flow......Page 453
10.4.1 Loss coefficients for stator flow......Page 458
10.5 Design of the Inlet of a Radial Inflow Turbine......Page 462
10.5.1 Minimum inlet Mach number......Page 463
10.5.2 Blade stagnation Mach number......Page 469
10.5.3 Inlet relative Mach number......Page 471
10.6.1 Minimum exit Mach number......Page 472
10.6.2 Radius ratio r3s/r2......Page 475
10.6.3 Blade height‐to‐radius ratio b2/r2......Page 476
10.6.4 Optimum incidence angle and the number of blades......Page 477
11.1 Hydroelectric Power Plants......Page 485
11.2 Hydraulic Turbines and their Specific Speed......Page 487
11.3 Pelton Wheel......Page 489
11.4 Francis Turbine......Page 497
11.5 Kaplan Turbine......Page 505
11.6 Cavitation......Page 508
12.1 Fluid Couplings......Page 513
12.1.1 Fundamental relations......Page 514
12.1.2 Flow rate and hydrodynamic losses......Page 516
12.1.3 Partially filled coupling......Page 518
12.2.1 Fundamental relations......Page 519
12.2.2 Performance......Page 522
Chapter 13 Wind Turbines......Page 529
13.1 Horizontal‐Axis Wind Turbine......Page 530
13.2.1 Axial momentum......Page 531
13.2.2 Ducted wind turbine......Page 536
13.2.3 Wake rotation......Page 538
13.2.4 Irrotational wake......Page 540
13.3.1 Nonrotating wake......Page 544
13.3.2 Wake with rotation......Page 547
13.3.3 Ideal wind turbine......Page 552
13.3.4 Prandtl's tip correction......Page 554
13.4 Turbomachinery and Future Prospects for Energy......Page 557
A.1.1 Fundamental equations......Page 561
A.1.2 Formal solution......Page 565
Appendix B Thermodynamic Tables......Page 567
References......Page 581
Index......Page 587
EULA......Page 592