Principles of Broadband Switching & Networks

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

An authoritative introduction to the roles of switching and transmission in broadband integrated services networks

Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamental principles are relevant to other communication networks with regular topologies.

After explaining the concept of the modern broadband integrated services network and why it is necessary in today's society, the book moves on to basic switch design principles, discussing two types of circuit switch design—space domain and time domain—and packet switch design. Throughput improvements are illustrated by some switch design variations such as Speedup principle, Channel-Grouping principle, Knockout principle, and Dilation principle.

Moving seamlessly into advanced switch design principles, the book covers switch scalability, switch design for multicasting, and path switching. Then the focus moves to broadband communications networks that make use of such switches. Readers receive a detailed introduction on how to allocate network resources and control traffic to satisfy the quality of service requirements of network users and to maximize network usage. As an epilogue, the text shows how transmission noise and packet contention have similar characteristics and can be tamed by comparable means to achieve reliable communication.

Principles of Broadband Switching and Networking is written for senior undergraduate and first-year postgraduate students with a solid background in probability theory.

Author(s): Soung C. Liew, Tony T. Lee, Soung Liew, Tony Lee
Edition: 1st
Publisher: Wiley-Interscience
Year: 2010

Language: English
Pages: 478

Principles of Broadband Switching and Networking......Page 4
CONTENTS......Page 10
Preface......Page 16
About the Authors......Page 20
1 Introduction and Overview......Page 22
1.1.1 Roles of Switching and Transmission......Page 23
1.1.2 Telephone Network Switching and Transmission Hierarchy......Page 25
1.2 Multiplexing and Concentration......Page 26
1.3 Timescales of Information Transfer......Page 29
1.3.3 Packets and Cells......Page 30
1.4 Broadband Integrated Services Network......Page 31
Problems......Page 33
2 Circuit Switch Design Principles......Page 36
2.1.1 Nonblocking Properties......Page 37
2.1.2 Complexity of Nonblocking Switches......Page 39
2.1.3 Clos Switching Network......Page 41
2.1.4 Benes Switching Network......Page 49
2.1.5 Baseline and Reverse Baseline Networks......Page 52
2.1.6 Cantor Switching Network......Page 53
2.2.1 Time-Domain Switching......Page 56
2.2.2 Time–Space–Time Switching......Page 58
Problems......Page 60
3 Fundamental Principles of Packet Switch Design......Page 64
3.1 Packet Contention in Switches......Page 66
3.2 Fundamental Properties of Interconnection Networks......Page 69
3.2.1 Definition of Banyan Networks......Page 70
3.2.2 Simple Switches Based on Banyan Networks......Page 72
3.2.4 Nonblocking Conditions for the Banyan Network......Page 75
3.3 Sorting Networks......Page 80
3.3.1 Basic Concepts of Comparison Networks......Page 82
3.3.2 Sorting Networks Based on Bitonic Sort......Page 85
3.3.3 The Odd–Even Sorting Network......Page 91
3.3.4 Switching and Contention Resolution in Sort-Banyan Network......Page 92
3.4 Nonblocking and Self-Routing Properties of Clos Networks......Page 96
3.4.1 Nonblocking Route Assignment......Page 97
3.4.2 Recursiveness Property......Page 100
3.4.3 Basic Properties of Half-Clos Networks......Page 102
3.4.4 Sort-Clos Principle......Page 110
Problems......Page 111
4.1 Performance of Simple Switch Designs......Page 116
4.1.2 Throughput of an Input-Buffered Switch......Page 117
4.1.3 Delay of an Input-Buffered Switch......Page 124
4.1.4 Delay of an Output-Buffered Switch......Page 133
4.2.1 Look-Ahead Contention Resolution......Page 134
4.2.2 Parallel Iterative Matching......Page 136
4.3.1 Speedup Principle......Page 140
4.3.2 Channel-Grouping Principle......Page 142
4.3.3 Knockout Principle......Page 152
4.3.4 Replication Principle......Page 158
4.3.5 Dilation Principle......Page 159
Problems......Page 165
5.1.1 Tandem-Banyan Network......Page 172
5.1.2 Shuffle-Exchange Network......Page 175
5.1.3 Feedback Shuffle-Exchange Network......Page 179
5.1.4 Feedback Bidirectional Shuffle-Exchange Network......Page 187
5.1.5 Dual Shuffle-Exchange Network......Page 196
5.2 Switching by Memory I/O......Page 205
5.3.1 Generalized Knockout Principle......Page 208
5.3.2 Modular Architecture......Page 212
Problems......Page 219
6.1 Multicast Switching......Page 226
6.1.1 Multicasting Based on Nonblocking Copy Networks......Page 229
6.1.2 Performance Improvement of Copy Networks......Page 234
6.1.3 Multicasting Algorithm for Arbitrary Network Topologies......Page 241
6.1.4 Nonblocking Copy Networks Based on Broadcast Clos Networks......Page 249
6.2 Path Switching......Page 256
6.2.1 Basic Concept of Path Switching......Page 258
6.2.2 Capacity and Route Assignments for Multirate Traffic......Page 263
6.2.3 Trade-Off Between Performance and Complexity......Page 270
6.2.4 Multicasting in Path Switching......Page 275
6.A.1 A Formulation of Effective Bandwidth......Page 289
6.A.2 Approximations of Effective Bandwidth Based on On–Off Source Model......Page 290
Problems......Page 291
7.1 Synchronous Transfer Mode......Page 296
7.2 Delays in ATM Network......Page 301
7.3 Cell Size Consideration......Page 304
7.4.1 No Data Link Layer......Page 306
7.4.3 Virtual-Circuit Hop-by-Hop Routing......Page 307
7.4.4 Virtual Channels and Virtual Paths......Page 308
7.4.5 Routing Using VCI and VPI......Page 310
7.4.6 Motivations for VP/VC Two-Tier Hierarchy......Page 314
7.5 ATM Layer, Adaptation Layer, and Service Class......Page 316
7.7 Approaches Toward IP over ATM......Page 321
7.7.1 Classical IP over ATM......Page 322
7.7.2 Next Hop Resolution Protocol......Page 323
7.7.3 IP Switch and Cell Switch Router......Page 324
7.7.4 ARIS and Tag Switching......Page 327
7.7.5 Multiprotocol Label Switching......Page 329
7.A.1 ATM Layer......Page 332
7.A.2 Adaptation Layer......Page 335
Problems......Page 340
8 Network Traffic Control and Bandwidth Allocation......Page 344
8.1 Fluid-Flow Model: Deterministic Discussion......Page 347
8.2 Fluid-Flow On–Off Source Model: Stochastic Treatment......Page 353
8.3 Traffic Shaping and Policing......Page 369
8.4 Open-Loop Flow Control and Scheduling......Page 375
8.4.1 First-Come-First-Serve Scheduling......Page 376
8.4.2 Fixed-Capacity Assignment......Page 378
8.4.3 Round-Robin Scheduling......Page 379
8.4.4 Weighted Fair Queueing......Page 385
8.4.5 Delay Bound in Weighted Fair Queueing with Leaky-Bucket Access Control......Page 394
8.5 Closed-Loop Flow Control......Page 401
Problems......Page 402
9 Packet Switching and Information Transmission......Page 406
9.1 Duality of Switching and Transmission......Page 407
9.2.1 Pseudo Signal-to-Noise Ratio of Packet Switch......Page 411
9.2.2 Clos Network with Random Routing as a Noisy Channel......Page 414
9.3 Clos Network with Deflection Routing......Page 417
9.3.2 Analysis of Deflection Clos Network......Page 418
9.4.1 Complete Matching in Bipartite Graphs......Page 423
9.4.2 Graphical Codes......Page 426
9.4.3 Route Assignments of Benes Network......Page 428
9.5 Clos Network as Noiseless Channel-Path Switching......Page 431
9.5.1 Capacity Allocation......Page 432
9.5.2 Capacity Matrix Decomposition......Page 435
9.6 Scheduling and Source Coding......Page 437
9.6.1 Smoothness of Scheduling......Page 438
9.6.2 Comparison of Scheduling Algorithms......Page 441
9.6.3 Two-Dimensional Scheduling......Page 445
9.7 Conclusion......Page 451
Bibliography......Page 454
INDEX......Page 464