Principles of Artificial Neural Networks

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook is intended for a first-year graduate course on Artificial Neural Networks. It assumes no prior background in the subject and is directed to MS students in electrical engineering, computer science and related fields, with background in at least one programming language or in a programming tool such as Matlab, and who have taken the basic undergraduate classes in systems or in signal processing. The uniqueness of the book is in the breadth of its coverage over the range of all major artificial neural network approaches and in extensive hands-on case-studies on each and every neural network considered. These detailed case studies include complete program print-outs and results and deal with a range of problems, to illustrate the reader's ability to solve problems ranging from speech recognition, character recognition to control and signal processing problems, all on the basis of following the present text. Another unique aspect of the text is its coverage of important new topics of recurrent (time-cycling) networks and of large memory storage and retrieval problems. The text also attempts to show the reader how he can modify or combine one or more of the neural networks covered, to tailor them to a given problem which does not appear to fit any of the more standard designs, as is very often the case.

Author(s): Daniel Graupe
Series: Advanced Series in Circuits and Systems, Vol 3
Edition: WS
Publisher: World Scientific Publishing Company
Year: 1997

Language: English
Pages: 252