Practical Data Science Cookbook

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

89 hands-on recipes to help you complete real-world data science projects in R and Python

About This Book

  • Learn about the data science pipeline and use it to acquire, clean, analyze, and visualize data
  • Understand critical concepts in data science in the context of multiple projects
  • Expand your numerical programming skills through step-by-step code examples and learn more about the robust features of R and Python

Who This Book Is For

If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

In Detail

As increasing amounts of data is generated each year, the need to analyze and operationalize it is more important than ever. Companies that know what to do with their data will have a competitive advantage over companies that don't, and this will drive a higher demand for knowledgeable and competent data professionals.

Starting with the basics, this book will cover how to set up your numerical programming environment, introduce you to the data science pipeline (an iterative process by which data science projects are completed), and guide you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples in the two most popular programming languages for data analysis—R and Python.

Author(s): Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta
Publisher: Packt Publishing - ebooks Account
Year: 2014

Language: English
Pages: 448
Tags: Библиотека;Компьютерная литература;Python;