An Essential Guide to Control Engineering FundamentalsUnderstand the day-to-day procedures of today's control engineer with the pragmatic insights and techniques contained in this unique resource. Written in clear, concise language, Practical Control Engineering shows, step-by-step, how engineers simulate real-world phenomena using dynamic models and algorithms. Learn how to handle single and multiple-staged systems, implement error-free feedback control, eliminate anomalies, and work in the frequency and discrete-time domains. Extensive appendices cover basic calculus, differential equations, vector math, Laplace and Z-transforms, and Matlab basics. Practical Control Engineering explains how to:Gain insight into control engineering and process analysisWrite and debug algorithms that simulate physical processes Understand feedback, feedforward, open loops, and cascade controlsBuild behavioral models using basic applied mathematicsAnalyze lumped, underdamped, and distributed processesComprehend matrix, vector, and state estimation concepts Convert from continuous to discrete-time and frequency domainsFilter out white noise, colored noise, and stochaic disturbances
Author(s): David Koenig
Edition: 1
Publisher: McGraw-Hill Professional
Year: 2009
Language: English
Pages: 500
Contents......Page 7
Preface......Page 17
1-1 What Is a Feedback Controller......Page 26
1-2 What Is a Feedforward Controller......Page 28
1-3 Process Disturbances......Page 30
1-4 Comparing Feedforward and Feedback Controllers......Page 32
1-5 Combining Feedforward and Feedback Controllers......Page 33
1-6 Why Is Feedback Control Difficult to Carry Out......Page 34
1-7 An Example of Controlling a Noisy Industrial Process......Page 35
1-8 What Is a Control Engineer......Page 40
1-9 Summary......Page 41
2-1 Approaches to Developing Control Algorithms......Page 42
2-2 Dealing with the Existing Process......Page 44
2-3 Dealing with Control Algorithms Bundled with the Process......Page 52
2-4 Some General Comments about Debugging Control Algorithms......Page 54
2-6 Documentation and Indispensability......Page 60
2-7 Summary......Page 61
3-1 The First-Qrder Process-an Introduction......Page 62
3-2 Mathematical Descriptions of the First-Grder Process......Page 64
3-3 The Laplace Transform......Page 82
3-4 Summary......Page 83
4-1 Onward to the Frequency Domain......Page 100
4-2 How Can Sinusoids Help Us with Understanding Feedback Control?......Page 112
4-3 The First-Grder Process with Feedback Control in the Frequency Domain......Page 116
4-4 A Pure Dead-Tune Process......Page 124
4-5 A First-Order with Dead-Tune (FOWDT) Process......Page 132
4-6 A Few Comments about Simulating Processes with Variable Dead Tunes......Page 139
4-7 Partial Summary and a Slight Modification of the Rule of Thumb......Page 141
4-8 Summary......Page 143
5-1 Third-Grder Process without Backflow......Page 146
5-2 Third-Grder Process with Backflow......Page 154
5-3 Control of Three-Tank System with No Backflow......Page 158
5-4 Critical Values and Finding the Poles......Page 164
5-5 Multitank Processes......Page 165
5-6 Summary......Page 168
6-1 The Dynamics of the Mass/Spring/ I>ashpotProcess......Page 170
6-2 Solutions in Four Domains......Page 174
6-2-5 Scaling and Round-off Error......Page 177
6-3 PI Control of the Mass/Spring/Dashpot Process......Page 178
6-4 Derivative Control (PID)......Page 181
6-5 Compensation before Control-The Transfer Function Approach......Page 190
6-6 Compensation before Control-The State-Space Approach......Page 196
6-7 An Electrical Analog to the Mass/DashPOt/ Spring Process......Page 199
6-8 Summary......Page 201
7-1 The Tubular Energy Exchanger- Steady State......Page 202
7-2 The Tubular Energy Exchanger-Transient Behavior......Page 205
7-3 Solution of the Tubular Heat Exchanger Equation......Page 208
7-4 Response of Tubular Heat Exchanger to Step in Jacket Temperature......Page 210
7-5 Studying the Tubular Energy Exchanger in the Frequency Domain......Page 213
7-6 Control of the Tubular Energy Exchanger......Page 117
7-7 Lumping the Tubular Energy Exchanger......Page 119
7-8 Lumping and Axial Transport......Page 225
7-9 State-Space Version of the Lumped Tubular ExChanger......Page 227
7-10 Summary......Page 229
8-1 The Discrete Tune Domain......Page 230
8-2 White Noise and Sample Estimates of Population Measures......Page 231
8-3 Non-White Stochastic Sequences......Page 240
8-4 Populations, Realizations, Samples, Estimates, and Expected Values......Page 241
8-5 Comments on Stochastic Disturbances and Difficulty of Control......Page 255
8-6 Summary......Page 259
9 The Discrete TIme Domain and the z- Transform......Page 260
9-1 Discretizing the First-Order Model......Page 261
9-2 Moving to the Z-Domain via the Backshift Operator......Page 263
9-3 Sampling and Zero-Holding......Page 264
9-4 Recognizing the First-Grder Model as a Discrete Tune Filter......Page 268
9-6 The Proportional-Integral Control Equation in the Discrete Time Domain......Page 269
9-7 Converting the Proportional-Integral Control Algorithm to Z- Transforms......Page 271
9-8 The PIID Control Equation in the Discrete Tune Domain......Page 272
9-9 Using the Laplace Transform to Design Control Algorithms-the Q Method......Page 274
9-10 Using the Z- Transform to Design Control Algorithms......Page 278
9-11 Designing a Control Algorithm for a Dead-Tune Process......Page 281
9-12 Moving to the Frequency Domain......Page 284
9-13 Filters......Page 288
9-14 Frequency Domain Filtering......Page 296
9-15 The Discrete Tune State-Space Equation......Page 298
9-16 Determining Model Parameters from Experimental Data......Page 299
9-17 Process Identification with White Noise mputs......Page 304
9-18 Summary......Page 308
10 Estimating the State and Using It for Control......Page 310
10-1 An Elementary Presentation of the Kalman Filter......Page 311
10-2 Estimating the Underdamped Process State......Page 316
10-3 The Dynamics of the Kalman Filter and an Alternative Way to Find the Gain......Page 321
10-4 Using the Kalman Filter for Control......Page 324
10-4-1 A Little Detour to Find the IntealGain......Page 325
10-5 Feeding Back the State for Control......Page 326
10-6 Integral and Multidimensional Control......Page 328
10-8 Control of the Lumped Tubular Energy Exchanger......Page 335
10-9 Miscellaneous Issues......Page 340
10-10 Summary......Page 341
11-1 The Strange Motel Shower Stall Control Problem......Page 342
11-2 Identifying the Strange Motel Shower Stall Control Approach as Integral Only......Page 346
11-3 Proportional-Integral, Proportional-Only, and Proportional-Integral-Derivative Control......Page 347
11-4 Cascade Control......Page 353
11-5 Control of White Noise--Conventional Feedback Control versus SPC......Page 357
11-6 Control Choices......Page 360
11-7 Analysis and Design Tool Choices......Page 362
A: Rudimentary Calculus......Page 364
B: Complex Numbers......Page 382
C: Spectral Analysis......Page 394
D: Infinite and Taylor's Series......Page 410
E: Application of the Exponential Function to Differential Equations......Page 414
F: The Laplace Transform......Page 420
G: Vectors and Matrices......Page 446
H: Solving the State-Space Equation......Page 468
I: The Z- Transform......Page 480
J: A Brief Exposure to Matlab......Page 492
Index......Page 496