Книга Power Electronics and Design 2004 Power Electronics and Design 2004Книги Электротехника и связь Автор: Kluwer Ultra Год издания: 2004 Формат: pdf Издат.:Kluwer Academic Publishers Размер: 5.28 ISBN: 1-4020-8076-X Язык: Английский0 (голосов: 0) Оценка:Todaywearebeginningtohavetofaceuptotheconsequencesofthe stunning success of Moore’s Law, that astute observation by Intel’s Gordon Moore which predicts that integrated circuit transistor densities will double every12to18months.Thisobservationhasnowheldtrueforthelast25 yearsormore,andtherearemanyindicationsthatitwillcontinuetohold trueformanyyearstocome.Thisbookappearsatatimewhenthefirst examples ofcomplex circuitsin65nmCMOS technology are beginning to appear,andtheseproductsalreadymusttakeadvantageofmanyofthe techniques to be discussed and developed in this book. So why then should ourincreasingsuccessatminiaturization,asevidencedbythesuccessof Moore’s Law, be creating so many new difficulties in power management in circuit designs?
Author(s): Kluwer Ultra
Publisher: Kluwer Academic Publishers
Year: 1988
Language: English
Commentary: 24906
Pages: 290
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноэлектроника;
Contents......Page 6
Contributors......Page 8
Preface......Page 10
Introduction......Page 14
1.1 INTRODUCTION......Page 18
1.2 POWER CONSUMPTION BECOMES CRITICAL......Page 19
1.3 TRADITIONAL APPROACHES TO POWER REDUCTION......Page 21
1.4 ZERO-VTH DEVICES......Page 22
1.5 DESIGN APPROACHES TO POWER REDUCTION......Page 27
Acknowledgement......Page 35
References......Page 36
2.1 INTRODUCTION......Page 38
2.2 OPTICAL INTERCONNECT TECHNOLOGY......Page 39
2.3 AN OPTICAL CLOCK DISTRIBUTION NETWORK......Page 40
2.4 QUANTITATIVE POWER COMPARISON BETWEEN ELECTRICAL AND OPTICAL CLOCK DISTRIBUTION NETWORKS......Page 46
2.5 OPTICAL NETWORK ON CHIP......Page 50
References......Page 55
3.1 INTRODUCTION......Page 57
3.2 SINGLE ELECTRONICS......Page 58
3.3 MOLECULAR ELECTRONICS......Page 68
3.4 DISCUSSION......Page 69
References......Page 70
4.1 INTRODUCTION......Page 73
4.2 LEAKAGE MODEL AND CHARACTERISTICS......Page 77
4.3 SUBTHRESHOLD LEAKAGE REDUCTION......Page 78
4.4 LEAKAGE REDUCTION METHOD FOR BOTH SUBTHRESHOLD AND GATE LEAKAGE CURRENT......Page 84
4.5 RESULTS......Page 91
4.6 CONCLUSIONS......Page 98
References......Page 99
5.1 INTRODUCTION......Page 101
5.2 BACKGROUND......Page 103
5.3 PARTITIONED SHARED MEMORY ARCHITECTURE......Page 106
5.4 PERFORMANCE AND ENERGY CHARACTERIZATION......Page 108
5.5 EXPLORATION FRAMEWORK......Page 112
5.6 EXPERIMENTAL RESULTS......Page 114
5.7 CONCLUSIONS......Page 117
References......Page 118
6.1 INTRODUCTION......Page 120
6.2 BACKGROUND – TUNABLE CACHE PARAMETERS......Page 121
6.3 A SELF-TUNING LEVEL ONE CACHE ARCHITECTURE......Page 122
6.4 AUTOMATIC TUNING OF A TWO-LEVEL CACHE ARCHITECTURE - THE TCAT......Page 126
6.5 USING A VICTIM BUFFER IN AN APPLICATION SPECIFIC MEMORY HEIRARCHY......Page 130
6.6 LOW STATIC-POWER FREQUENT-VALUE DATA CACHES......Page 133
References......Page 138
7. REDUCING ENERGY CONSUMPTION IN CHIP MULTIPROCESSORS USING WORKLOAD VARIATIONS......Page 140
7.1 INTRODUCTION......Page 141
7.2 CHIP MULTIPROCESSOR ARCHITECTURE AND EXECUTION MODEL......Page 143
7.3 LOAD IMBALANCE IN PARALLEL EXECUTION......Page 144
7.4 COMPILER SUPPORT......Page 147
7.5 ADDITIONAL OPTIMIZATIONS......Page 149
7.6 EXPERIMENTS......Page 151
References......Page 155
8.1 INTRODUCTION......Page 158
8.2 ENERGY EFFICIENT HETEROGENEOUS SOC’S......Page 160
8.3 ULTRA LOW POWER COMPONENTS......Page 163
8.4 DESIGN & ARCHITECTURE EXPLORATION......Page 166
8.5 DOMAIN-SPECIFIC CO DESIGN ENVIRONMENTS......Page 167
References......Page 171
9.1 INTRODUCTION......Page 173
9.2 TRANSFORMATIONS OVERVIEW......Page 174
9.3 METHODOLOGY......Page 176
9.4 CASE STUDIES......Page 178
9.5 EXPERIMENTAL RESULTS......Page 186
9.6 CONCLUSIONS......Page 187
References......Page 188
10.1 INTRODUCTION......Page 189
10.2 PRELIMINARIES......Page 190
10.3 BACKLIGHT AND TRANSMITTANCE SCALING......Page 202
References......Page 213
11.1 INTRODUCTION......Page 215
11.2 REMOTE STORAGE SPACE......Page 216
11.3 SWAP DEVICES......Page 217
11.4 EXPERIMENTAL SETUP......Page 219
11.5 CHARACTERIZATION OF SWAPPING COSTS......Page 220
11.6 POWER OPTIMIZATION......Page 221
11.7 CASE STUDY......Page 225
11.8 CONCLUSION......Page 227
References......Page 228
12.1 INTRODUCTION......Page 231
12.2 PHYSICAL LAYER......Page 232
12.3 SYSTEM INTERCONNECT ARCHITECTURE......Page 234
12.4 DATA LINK LAYER......Page 236
12.5 NETWORK LAYER......Page 238
12.6 TRANSPORT LAYER......Page 240
12.7 SYSTEM AND APPLICATION LAYERS......Page 242
12.8 APPLICATION-SPECIFIC NETWORKS-ON-CHIP......Page 243
12.9 CONCLUSIONS......Page 247
References......Page 248
13. SYSTEM LEVEL POWER MODELING AND SIMULATION OF HIGH-END INDUSTRIAL NETWORK-ON-CHIP......Page 250
13.2 BACKGROUND......Page 251
13.3 ON-CHIP NETWORK: STBUS INTERCONNECT......Page 252
13.4 ENABLING ENERGY EXPLORATION FOR NOC......Page 253
13.5 STBUS ENERGY MODEL......Page 257
13.6 OPTIMAL DESIGN OF EXPERIMENTS......Page 258
13.7 STBUS POWER MODEL VALIDATION AND EXPERIMENTAL RESULTS......Page 261
13.8 LOW EFFORT, HIGH ACCURACY POWER MACRO MODELING......Page 265
13.9 CONCLUSIONS......Page 269
References......Page 270
14. ENERGY-AWARE ADAPTATIONS FOR END-TO-END VIDEOSTREAMINGTOMOBILEHANDHELD DEVICES......Page 272
14.1 MOTIVATION......Page 273
14.2 RELATED WORK......Page 274
14.3 SYSTEM MODEL......Page 277
14.4 HARDWARE/ARCHITECTURAL LEVEL OPTIMIZATIONS......Page 278
14.5 OS/MIDDLEWARE LEVEL OPTIMIZATIONS......Page 281
14.6 APPLICATION LAYER ADAPTATION......Page 286
14.7 SUMMARY......Page 287
References......Page 288