Potential and Challenges of Low Carbon Fuels for Sustainable Transport

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on low carbon fuels a preferable class of fuels for Internal Combustion Engines (ICEs) highlighting the effect of low carbon fuels on tailpipe emissions. This book aims to strengthen the knowledge base dealing with low carbon fuels as a sustainable transport fuel. The volume includes recent results and are focused on current trends of automotive sector. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine instrumentation, and environmental research.


Author(s): Avinash Kumar Agarwal, Hardikk Valera
Series: Energy, Environment, and Sustainability
Publisher: Springer
Year: 2021

Language: English
Pages: 358
City: Cham

Preface
Contents
Editors and Contributors
Part I General
1 Introduction of Potential and Challenges of Low Carbon Fuels for Sustainable Transport
Reference
Part II Production and Fuel Injection Aspects
2 Some of the Bio-fuels for Internal Combustion Engines: Alcohols and Biodiesel
2.1 Introduction
2.2 Alcohols
2.2.1 Methanol, Ethanol, Butanol
2.2.2 Advantages and Disadvantages of Alcohols
2.3 Biodiesel
2.3.1 Biodiesel Production Potential in Turkey and the World
2.3.2 Vegetable Oils and Use of Vegetable Oils as the Diesel Engine Fuel
2.3.3 Biodiesel Production Process and Production Methods
2.3.4 Biodiesel Fuel Specifications and Standards
2.4 The Effect of Biofuels on Economy, Engine Performance, Combustion, and Exhaust Emission Characteristics
2.5 Conclusions and Recommendations
References
3 Production of Bioethanol from Microalgal Feedstock: A Circular Biorefinery Approach
3.1 Introduction
3.2 Microalgae as a Sustainable and Renewable Feedstock for Energy Generation
3.2.1 Microalgal Metabolites for Fuel and Feed
3.3 Bioethanol Production from Microalgae
3.3.1 Direct Bioethanol Production
3.3.2 Microalgal Biomass as a Feedstock for Bioethanol Production
3.3.3 Microalgal Bioethanol Production: Limitations
3.4 The Biorefinery Approach of Bioethanol Production from Microalgae
3.4.1 Biorefinery Route 1: Bioethanol Production Coupled with Other Biofuel Production
3.4.2 Biorefinery Route 2: Value Added Product Extraction Prior to Bioethanol Fermentation
3.4.3 Biorefinery Route 3: Bioethanol Production Followed by Utilization of the Solid Residue as Biomanure
3.5 Circular Bioeconomy for Third Generation Bioethanol Production
3.6 Techno Economic Evaluation of the Biorefinery Routes
3.7 Practical Implication of the Study
3.8 Conclusion
References
4 Fuel Delivery System for Alternative Fuel Engines: A Review
4.1 Introduction
4.2 Fuel Delivery System of Conventional IC Engines
4.2.1 Fuel Delivery System of SI Engine
4.2.2 Fuel Delivery System of CI Engine
4.3 Approaches to Develop Fuel Delivery System to Adapt Alternative Fuel
4.4 Fuel Delivery System for SI Engine to Adapt Alternative Fuel
4.4.1 Liquefied Petroleum Gas (LPG)
4.4.2 Natural Gas
4.4.3 Alcohols
4.4.4 Hydrogen
4.5 Fuel Delivery System for CI Engine to Adapt Alternative Fuel
4.5.1 Methanol
4.5.2 Biodiesel
4.5.3 DME
4.5.4 F-T Diesel Fuel
4.5.5 Coal—Water—Slurry
4.6 Fuel Delivery System for Dual Fuel Engine to Adapt Alternative Fuel
4.6.1 Natural Gas
4.6.2 Methanol
4.6.3 Ammonia
4.7 Summary
References
Part III Alcohol as a Fuel/Additive
5 Alcohols as Alternative Fuels for Transport
5.1 Introduction
5.2 Characteristics of Alcohol Fuels
5.2.1 Physical and Chemical Properties
5.2.2 Economic Status
5.3 Engine with Alcohol Fuels for Transports
5.3.1 Vehicles
5.3.2 Ships
5.3.3 Locomotives
5.3.4 Aviation
5.3.5 Non-road Vehicles
5.4 Fuel Cell Powertrain with Alcohols for Transports
5.4.1 Vehicles
5.4.2 Ships
5.4.3 Locomotive
5.4.4 Aviation
5.5 Conclusions
References
6 Advances in the Use of Ethers and Alcohols as Additives for Improving Biofuel Properties for SI Engines
6.1 Introduction
6.2 Biofuel Additives
6.2.1 Methanol
6.2.2 Ethanol
6.2.3 Butanol
6.2.4 Ethers
6.2.5 Alcohol and Ether in Biofuels
6.3 Ethanol-Ether Admixed Biofuel-Properties and Engine Compatibility
6.4 The Mechanism of Performance of Alcohol Admixed Biofuel towards Ensuring High Engine Compatibility and Engine Performance
6.5 Characteristics of Alcohol and Ether-Admixed Biofuels for High Engine Performance: Source, Composition and Properties
6.5.1 Effect on Torque and Power
6.5.2 Effect on Fuel Consumption (FC)
6.5.3 Effect on NOx and HC Emissions
6.5.4 Effect of on Carbon Dioxide and Carbon Monoxide Emissions
6.6 Recent Advances in the Use of Ether and Ethanol Admixed Biofuels for Improved Engine Performance
6.6.1 Engine Modifications
6.6.2 Fuel Property-Enhancement
6.7 Concluding Remarks
References
7 Influence of Oxygenated Fuel and Additives in Biofuel Run Compression Ignition Engine
7.1 Introduction
7.2 Fuel Improvements Techniques in CI Engine
7.2.1 Biodiesel Application in CI Engines
7.2.2 Application of Alcohol as Fuel in CI Engine
7.2.3 Emulsification in CI Engines
7.3 Conclusion
References
Part IV Carbon Neutrality
8 Future Sustainable Transport Fuels for Indian Heavy Duty Vehicles
8.1 Introduction
8.1.1 Internal Combustion Engines
8.1.2 Present Problems and Challenges
8.1.3 Different Approaches Toward CO2 and Air Pollution Mitigation
8.2 Prospective Transport Solution for India
8.2.1 Natural Gas
8.2.2 Methanol and Ethanol
8.2.3 DME
8.2.4 HVO
8.2.5 Synthetic Fuel
8.3 Review of Various Technologies and Suitable Alternate Fuels to Improve Older, Present Modern and Future Heavy Duty Diesel Engines
8.3.1 Older/Aged Fleet of Heavy Duty Vehicles
8.3.2 Modern Heavy Duty Engines
8.3.3 Modern Heavy Duty Engines on Path of Achieving 50% Brake Thermal Efficiency
8.3.4 Future Sustainable Heavy Duty Engines on Path of Achieving ≥ 50% Brake Thermal Efficiency
8.4 Summary
References
9 Potential and Challenges of Using Biodiesel in a Compression Ignition Engine
9.1 Introduction
9.2 Fuel Properties of Biodiesel
9.3 Using Biodiesel as a Fuel in CI Engines
9.3.1 Effect of Biodiesel on Combustion Characteristics
9.3.2 Effect of Biodiesel on Engine Performance
9.3.3 Effect of Biodiesel on Engine Emissions
9.4 Various Modifications to Improve Engine Characteristics
9.4.1 Various Fuel Additives and Their Impact on Engine
9.4.2 Various Engine Modifications
9.5 Challenges of Using Biodiesel in Diesel Engines
9.5.1 Economic Analysis of Biodiesel Production
9.5.2 Engine Compatibility with Biodiesel
9.6 Current Status of Biodiesel
9.7 Conclusion
References
10 Biodiesel and Renewable Diesel as a Drop-in Fuel for Decarbonized Maritime Transportation
10.1 Introduction
10.1.1 Status of Maritime Transportation
10.1.2 Emissions from Global Maritime Transportation
10.2 International Maritime Organization Actions
10.3 Biofuel
10.3.1 Generations of Biofuels
10.3.2 Biodiesel and Renewable Diesel
10.3.3 Raw Materials
10.3.4 Properties of Biodiesel
10.3.5 Safety and Storage
10.3.6 Engine Performance and Engine Manufacturer Warranty
10.3.7 Emissions
10.3.8 Biofuel Marine Applications
10.3.9 Comparison of FAME and HVO with Other Alternative Marine Fuels
10.4 Summary
References