Porous Silicon Carbide and Gallium Nitride: Epitaxy, Catalysis, and Biotechnology Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Porous Silicon Carbide and Gallium Nitride: Epitaxy, Catalysis, and Biotechnology Applications presents the state-of-the-art in knowledge and applications of porous semiconductor materials having a wide band gap. This comprehensive reference begins with an overview of porous wide-band-gap technology, and describes the underlying scientific basis for each application area. Additional chapters cover preparation, characterization, and topography; processing porous SiC; medical applications; magnetic ion behavior, and many more

Author(s): Randall M. Feenstra, Colin E. C. Wood
Edition: 1
Year: 2008

Language: English
Pages: 332

Porous Silicon Carbide and Gallium Nitride......Page 4
Contents......Page 8
Preface......Page 14
1.1 Introduction......Page 18
1.2.1 Crystal Anodization......Page 19
1.2.2 Description of the Porous Structure......Page 20
1.2.3 Model of the Morphology......Page 26
1.3.1 Experimental......Page 32
1.3.2 Results......Page 33
1.3.3 Discussion......Page 35
1.4 Summary......Page 43
References......Page 44
2.1 Introduction......Page 48
2.2 Formation of Porous Layer......Page 49
2.3 Diffusion in Porous SiC......Page 59
2.4 Oxidation......Page 64
2.5 Contacts to Porous SiC......Page 66
References......Page 70
3.1 Introduction......Page 72
3.2 SiC CVD Growth......Page 74
3.3.1 Growth on Porous Si Substrates......Page 75
3.3.2 Growth on Stabilized Porous Si Substrates......Page 79
3.4.1 Growth in LPCVD Cold-wall Reactor......Page 81
3.5 Growth of 4H-SiC on Porous 4H-SiC......Page 84
3.6 Conclusion......Page 90
References......Page 91
4.1 Introduction......Page 94
4.2 Creation of Porous GaN by Electroless Etching......Page 95
4.3.1 Porous GaN Derived from Unintentionally Doped Films......Page 97
4.3.2 Transmission Electron Microscopy (TEM) Characterization......Page 101
4.4 Luminescence of Porous GaN......Page 102
4.4.1 Cathodoluminescence (CL) of Porous GaN......Page 103
4.4.2 Photoluminescence (PL) of Porous GaN......Page 105
4.5.1 Characteristics of Raman scattering in GaN......Page 106
4.5.2 Raman Spectra of Porous GaN Excited Below Band Gap......Page 108
References......Page 112
5.1 Introduction......Page 118
5.2.1 Porous Substrates......Page 121
5.2.2 Hydrogen Etching......Page 122
5.3.1 Experimental Details......Page 125
5.3.2 Film Structure......Page 127
5.3.3 Film Strain......Page 131
5.4 Summary......Page 133
References......Page 134
6.1 Introduction......Page 138
6.2 Epitaxy of GaN on Porous SiNx Network......Page 139
6.2.1 Three-step Growth Method......Page 140
6.2.2 Structural and Optical Characterization......Page 145
6.2.3 Schottky Diodes (SDs) on Undoped GaN Templates......Page 152
6.2.4 Deep Level Transition Spectrum......Page 155
6.3.1 Formation of Porous TiN......Page 157
6.3.2 Growth of GaN on Porous TiN......Page 159
6.3.4 Characterization by TEM......Page 163
6.3.5 Characterization by PL......Page 169
6.4 Growth of GaN on Porous SiC......Page 171
6.4.1 Fabrication of Porous SiC......Page 173
6.4.2 GaN Growth on Hydrogen Polished Porous SiC......Page 174
6.4.3 GaN Growth on Chemical Mechanical Polished Porous SiC......Page 181
References......Page 184
7.1 Introduction......Page 188
7.2 PSC Substrate Fabrication and Properties......Page 189
7.2.1 Formation of Various Types of SPSC Structure......Page 190
7.2.2 Dense Layer......Page 194
7.2.3 Monitoring of Anodization Process......Page 195
7.2.4 Vacancy Model of Primary Pore Formation......Page 200
7.2.5 Stability of SPSC Under Post-Anodization Treatment......Page 207
7.3.1 The Growth and Its Effect on the Structure of the PSC Substrate......Page 212
7.3.2 Properties of the GaN Films Grown......Page 215
7.4 Summary......Page 223
References......Page 224
8.1 Introduction......Page 230
8.2 Extended Defects in Epitaxially Grown GaN Thin Layers......Page 231
8.3 Dislocation Mechanisms in Conventional Lateral Epitaxy Overgrowth of GaN......Page 234
8.4 Growth of GaN on Porous SiC Substrates......Page 237
8.5 Growth of GaN on Porous SiN and TiN Interlayers......Page 239
8.5.1 GaN Growth on a TiN Interlayer......Page 240
8.5.2 GaN Growth on a SiN Interlayer......Page 241
8.6 Summary......Page 243
References......Page 244
9.1 Introduction......Page 248
9.2 Resistivity and Hall Effect......Page 249
9.3.1 Fundamentals of DLTS......Page 251
9.3.2 Method of Solving the General Equation......Page 253
9.4 Sample Considerations......Page 254
9.5 Potential Energy Near a Pore......Page 255
9.6 DLTS Data and Analysis......Page 257
References......Page 260
10.1 Introduction......Page 262
10.2 Mn-Doped GaN Crystal......Page 264
10.3 Mn-Doped GaN Thin Films......Page 265
10.3.1 Mn-Doped GaN (1120) Surface......Page 266
10.3.2 Mn-Doped GaN (1010) Surface......Page 269
10.3.3 Mn and C Codoped in GaN (1010) Surface......Page 274
10.4.1 Mn-Doped GaN Nanowires......Page 276
10.4.2 Cr-Doped GaN Nanotubes......Page 279
10.4.3 Cr-Doped GaN Nanohole Arrays......Page 282
10.5.1 Giant Magnetic Moments of MnxN Clusters......Page 285
10.5.2 N-induced Magnetic Transition in Small CrxN Clusters......Page 286
10.6 Summary......Page 287
References......Page 288
11.1 Introduction......Page 292
11.2 Silicon Carbide Support......Page 293
11.3 Heat Effects During Reaction......Page 294
11.4 Reactions on SiC as Catalytic Supports......Page 295
11.5.1 Pt/• -SiC Catalyst for Catalytic Combustion of Carbon Particles in Diesel Engines......Page 296
11.5.3 SiC-Supported MoO3-Carbon-Modified Catalyst for the n-Heptane Isomerization......Page 297
11.5.4 Selective Oxidation of H2S Over SiC-Supported Iron Catalysts into Elemental Sulfur......Page 298
11.5.5 Partial Oxidation of n-Butane to Maleic Anhydride Using SiC-Mixed and Pd-Modified Vanadyl Pyrophosphate (VPO) Catalysts (Case study)......Page 299
References......Page 305
12.1 The Rationale for Implantable Semi-Permeable Materials......Page 308
12.2 The Biology of Soluble Signaling Proteins in Tissue......Page 309
12.3 Measuring Cytokine Secretion In Living Tissues and Organs......Page 311
12.4 Creating a Biocompatible Tissue – Device Interface: Advantages of SiC......Page 312
12.5 The Testing of SiC Membranes for Permeability of Proteins......Page 313
12.6 Improving the Structure of SiC Membranes for Biosensor Interfaces......Page 316
12.7 Theoretical Considerations: Modeling Diffusion through a Porous Membrane......Page 318
12.7.1 Effective Medium Models for a Porous Membrane......Page 319
12.7.2 Comparison with Experiment......Page 321
12.8 Future Development: Marriage of Membrane and Microchip......Page 322
Acknowledgements......Page 324
References......Page 325
Index......Page 328
Color_Plate......Page 336