Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications (Wiley-Scrivener)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Provides a one-stop source for information on synthesis, properties, and potential applications of nanotube reinforced polymer nanocompositesResearch on polymer nanotube composites is a relatively new field, and a lot of development is required to achieve a very large-scale commercial application. Although a number of developments have taken place in terms of the dispersion of nanotubes in the polymer matrices and corresponding improvements in the various physical properties of the composites, a meaningful text on the subject, which can assimilate these advancements in one place to provide an overall potential of the technology, is missing.This edited volume brings together contributions from a variety of senior scientists in the field of polymer nanotube composites technology to shed light on the recent advances in these commercially important areas of polymer technology. The book provides the following features:A summary of recent advances in nanotube composite synthesis technologyA basic introduction to polymer nanotube nanocomposite technology for readers who are new to the fieldValuable insights for the use of technologies for polymer nanocomposites for commercial applicationReviews of current polymer nanotube systems to underscore the high potential of nanotubes as fillersPathways for large-scale commercial applications ofnanotube nanocomposites

Author(s): Vikas Mittal
Edition: 1
Year: 2010

Language: English
Pages: 460

Polymer Nanotube Nanocomposites......Page 5
Contents......Page 7
Preface......Page 15
1.1 Introduction......Page 17
1.2 Properties......Page 20
1.3 Synthesis......Page 24
References......Page 28
2.1 Introduction......Page 31
2.2.1 Solution Mixing......Page 34
2.2.2 In-Situ Polymerization......Page 36
2.2.3 Melt Mixing......Page 38
2.3.1 Mechanical Properties......Page 41
2.3.2 Thermal and Electrical Properties......Page 50
References......Page 58
3. New Microscopy Techniques for a Better Understanding of the Polymer/Nanotube Composite Properties......Page 61
3.1 Introduction......Page 62
3.2 Near Field Microscopy......Page 63
3.2.1 Principles of STM and AFM......Page 64
3.2.3 AFM and CNT Composites......Page 66
3.3.1 Principles......Page 68
3.3.2 Characterisation of Carbon Nanotubes......Page 72
3.3.3 Characterisation of Polymer/ Nanotube Composites......Page 74
3.4.1 Overview of the Technique (SEI, BEI, CCI)......Page 83
3.4.2 Application to the Study of Nanotubes......Page 84
3.4.3 For Polymer CNT/Nanocomposites......Page 85
3.4.4 Development of New Imaging Modes......Page 88
3.5 Conclusions......Page 91
References......Page 93
4.1 Introduction......Page 99
4.2 Electrical Properties of Polymer Composites with Clay and CNTs......Page 102
4.3 Mechanical Properties of Polymer Composites with Clay and CNTs......Page 105
4.4 Thermal and Flame Properties of Polymer Composites with Clay and CNTs......Page 116
4.5 Conclusion and Future Outlook......Page 122
Acknowledgement......Page 124
References......Page 125
5.1 Introduction......Page 129
5.2 Surface Modification of Carbon Nanotubes......Page 131
5.3 Dispersion of Nanotubes in Polyethylene Matrix......Page 133
5.4 Method of Preparation of CNT-PE Composites......Page 135
5.5 Interfacial Bonding and Load Transfer......Page 139
5.6 Material Characterization......Page 142
5.7 Conclusions......Page 151
References......Page 152
6.1 Introduction......Page 157
6.2.1 Melt-Mixing......Page 160
6.2.2 Solution Casting......Page 161
6.2.3 In-Situ Polymerization......Page 162
6.2.4 Sol-Gel Approach......Page 163
6.3 Functionalization, Dispersion Morphology and Micro-/Nano-structures......Page 164
6.4.1 Mechanical Properties......Page 167
6.4.2 Thermal Conductivity......Page 170
6.4.3 Thermal Stability and Degradation......Page 171
6.4.4 Fire Retardancy......Page 172
6.4.5 Rheological Properties......Page 173
6.4.6 Electrical Conductivity......Page 174
6.4.7 Water Vapor Transport Properties......Page 177
6.4.8 Shape Memory......Page 178
6.4.9 Special Properties Related to Bio-Applications......Page 181
6.4.10 Microwave Absorption......Page 182
6.4.11 UV-Protection......Page 183
6.5 Applications......Page 184
6.6 Conclusions......Page 186
References......Page 187
7.1 Introduction......Page 193
7.2 Fabrication/Processing of CNT-PMMA Composites......Page 195
7.2.1 Solution Processing......Page 197
7.2.2 Melt-Processing......Page 199
7.2.3 In-Situ Polymerization Processing......Page 201
7.2.4 Coagulation Method......Page 202
7.2.5 Surfactant, Compatibilizers and Co-Solvent Assisted CNT-PMMA Composites......Page 204
7.2.6 Chemical Modification of CNTs for Processing of Nanocomposites......Page 205
7.3 Mechanical Properties of CNT-PMMA Composites......Page 206
7.4.1 Electrical Conductivity......Page 214
7.4.2 Electromagnetic Interference (EMI) Shielding......Page 216
7.5 Thermal Properties......Page 220
References......Page 232
8.1 Introduction......Page 237
8.2 Free Radical Polymerization......Page 239
8.3 Suspension and Bulk Polymerization Techniques......Page 241
8.4.1 Polymer Matrix......Page 244
8.4.2 Addition of Radicals onto CNT......Page 245
8.4.3 CNT Degradation......Page 248
8.4.4 Additional Analyses......Page 249
8.5 Polymer/CNT Composite Microspheres......Page 251
8.5.1 CNT Material Adsorbed onto Polymer Microspheres......Page 255
8.6 Electrorheology of Polymer/CNT Nanocomposites Prepared by in-situ Suspension Polymerization......Page 259
References......Page 262
9.1 Introduction......Page 265
9.2 Synthesis of PLA......Page 268
9.3 Carbon Nanotubes......Page 270
9.4 Preparation of PLA-CNT Nanocomposites......Page 271
9.5 Viscoelastic Properties......Page 280
9.6 Thermal Properties......Page 284
9.7 Mechanical Properties......Page 285
9.8 Thermal Degradation Properties......Page 288
9.9 Electrical Conductivity Properties......Page 289
9.10 Biodegradability......Page 290
9.12 Conclusions......Page 291
References......Page 292
10.1 Introduction......Page 297
10.2 Poly(ether ether ketone)s: Structure, Synthesis and Properties......Page 299
10.3.2 Synthesis and Purification of Arc-Grown SWCNTs......Page 301
10.3.3 Characterization of the Single-Walled Carbon Nanotubes......Page 303
10.4 Integration of the Carbon Nanotubes in the PEEK Matrix......Page 306
10.4.1 Covalent Grafting in Carbon Nanotube/PEEK Nanocomposites......Page 307
10.4.2 Wrapping of the SWCNTs in Compatibilizing Agents......Page 308
10.4.3 Pre-Mixing Stage and Melt Blending Approach......Page 310
10.5.1 Morphology......Page 311
10.5.2 Thermogravimetric Study......Page 313
10.5.3 Differential Scanning Calorimetry......Page 314
10.5.4 X-ray Diffraction Analysis......Page 319
10.5.5 Mechanical Properties......Page 320
10.5.6 Electrical and Thermal Conductivity......Page 323
10.6 Concluding Remarks......Page 325
Glossary of Abbreviations......Page 326
References......Page 327
11.1 Introduction......Page 331
11.1.1 Mechanical and Electrical Properties of Carbon Nanotubes......Page 332
11.1.2 Why Use Nanotubes in Nanocomposites?......Page 333
11.1.3 Poly(vinyl) Alcohol......Page 335
11.2.1 Films......Page 336
11.2.2 Fibers......Page 340
11.3 Mechanical Properties of the Composites......Page 343
11.3.1 Reinforcement......Page 344
11.3.2 Stress Transfer Efficiency......Page 347
11.4 Electrical Properties......Page 349
11.5.1 Energy Absorption......Page 351
11.5.2 Shape Memory Effect......Page 353
11.6 Conclusion......Page 355
References......Page 356
12.1 Introduction......Page 361
12.2 Composite Processing......Page 363
12.3 Electrical Properties......Page 366
12.4.1 Tensile and Swelling Behaviors......Page 371
12.4.2 Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC)......Page 377
12.5 Spectroscopic Characterization......Page 380
12.6 Thermal Stability......Page 383
References......Page 385
13.1 Introduction......Page 389
13.2.2 Preparation of the Modifiers......Page 392
13.2.3 Melt Blending......Page 393
13.2.4 Characterization......Page 394
13.3.1 Specific Interactions: Spectroscopic and Microscopic Evidences......Page 395
13.3.2 AC Electrical Conductivity Measurements: Assessing the State of Dispersion of MWNTs......Page 397
13.3.3 Phase Morphology and Selective Localization of MWNTs in the Blends......Page 399
13.3.4 Melt-Interfacial Interactions......Page 402
13.4 Summary......Page 403
References......Page 404
14.1 Background......Page 407
14.2.1 Structure and Mechanical Properties of CNTs......Page 408
14.2.2 Characterization of CNTs/Polymer Composites......Page 411
14.2.3 Structure and Tensile Properties of CNTs/Polymer Composites......Page 412
14.3 Concluding Remarks......Page 433
References......Page 434
15. Polymer Nanotube Composites: Promises and Current Challenges......Page 439
15.1.1 Background......Page 440
15.1.2 Synthesis of CNTs......Page 441
15.1.3 Fabrication of CNT Polymer Composites......Page 442
15.1.4 Electrical Properties of CNT Polymer Composites......Page 445
15.1.5 Mechanical Properties of CNT Polymer Composites......Page 448
15.2.1 Case Study: CNT-Based Strain Sensor......Page 451
15.2.2 Case Study: Technical and Economic Feasibility of Using CNT-Based Composites in Aerospace Applications......Page 456
15.3 Conclusions......Page 461
References......Page 462
Index......Page 465