Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modeling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst aging, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modeling and experimental monitoring techniques.
Author(s): Dr. Christoph Hartnig, Dr. Christina Roth
Series: Woodhead Publishing Series in Energy
Publisher: Woodhead Publishing
Year: 2012
Language: English
Pages: 436
Tags: Химия и химическая промышленность;Электрохимия;Химические источники тока;Химия и технология топливных элементов;